Fiber optic technology helps chips communicate with each other at the speed of light, allowing them to transmit 80 times more information than using traditional electrical connections. This could significantly reduce the training time required for large-scale artificial intelligence models from months to weeks, while also reducing data center energy and emissions costs.
Most cutting-edge computer chips still communicate using electrical signals transmitted over copper wires. But as the tech industry rushes to train AI models at scale, a process that requires networks of AI superchips to transfer large amounts of data, companies are using fiber optic speed-of-light communications to link chips together. I am very passionate about this.
This technology is not new. The Internet already relies on undersea fiber-optic cables that stretch thousands of kilometers between continents. But to transmit data between fingernail-sized chips, companies need to connect as many hair-thin optical fibers as possible to the end of each chip.
“As everyone knows, the best communication technology is fiber optics. That’s why fiber optics is used everywhere for long-distance communications.” Mukesh Khare A preview of the technology was given at a press conference at IBM Research. “This co-packaged optical innovation essentially brings the power of fiber optics to the chip itself.”
Khare and his colleagues have developed an optical module that allows chipmakers to add six times more optical fibers to the edge of a chip than with current technology. This module uses a structure called an optical waveguide to connect 51 optical fibers per millimeter. It also prevents optical signals from one fiber from interfering with adjacent fibers.
“What IBM has really done here is take advantage of all of its materials and packaging technology, its history of leadership in that field, to truly break down the way waveguides can be used to achieve high-density optical fiber. “It’s about doing it,” he says. dan hutchison at TechInsights, a semiconductor technology research company headquartered in Canada. “For me, when I saw this, it was a big step forward.”
The result is enhanced chip-to-chip communication, potentially allowing AI developers to train large language models in less than three weeks instead of three months. Switching from wires to fiber optics for chip communications could also mean cutting energy costs for training such AI models by a factor of five.
IBM has already put its optical modules through stress tests that include high humidity and temperatures ranging from -40°C (-40°F) to 125°C (257°F). Hutcheson expects large semiconductor manufacturing companies may be interested in licensing the technology.
“We are in the early days of all of this, but semiconductor technology is the hottest area right now in terms of high-performance computing and AI technology,” he says.
topic:
- artificial intelligence/
- computing
Source: www.newscientist.com