A method developed by a team at Harvard University to reduce errors addresses a critical hurdle in scaling up technology.
Quantum computing technology has the potential to achieve unprecedented speed and efficiency, vastly exceeding the capabilities of even the most advanced supercomputers currently available. However, this innovative technology has not been widely scaled or commercialized, primarily due to inherent limitations in error correction. Quantum computers, unlike classical computers, cannot correct errors by copying encoded data over and over again. Scientists had to find another way.
Now, a new paper Nature depicting Harvard University quantum computing A potential platform to solve a long-standing problem known as quantum error correction.
The Harvard team is led by quantum optics expert Mikhail Lukin, Joshua and Beth Friedman Professor of Physics and co-director of the Harvard Quantum Initiative. The research reported in Nature was a collaboration between Harvard University. Massachusetts Institute of Technology, Boston-based QuEra Computing. George Busmer Leverett Professor of Physics and Marcus Greiner’s group also participated.
Unique Harvard Platform
The Harvard University platform, an effort over the past several years, is built on an array of very cold rubidium atoms captured by a laser.Each atom They act as bits (called “qubits” in the quantum world) that can perform extremely fast calculations.
The team’s main innovation is configuring a “neutral atomic array” so that the layout can be dynamically changed by moving and connecting atoms during calculations. This is called “entanglement” in physics terms. 2 Operations that entangle pairs of atoms called qubit logic gates are units of computing power.
Running complex algorithms on a quantum computer requires many gates. However, these gating operations are known to be error-prone, and the accumulation of errors renders the algorithm useless.
In a new paper, the team reports near-perfect performance of the two-qubit entanglement gate with extremely low error rates. For the first time, they demonstrated the ability to entangle atoms with an error rate of less than 0.5 percent. In terms of operational quality, this puts the performance of the company’s technology on par with other major types of quantum computing platforms, such as superconducting qubits and trapped ion qubits.
Benefits and future prospects
However, Harvard’s approach has significant advantages over these competitors due to its large system size, efficient qubit control, and the ability to dynamically reconfigure the atomic layout.
“We demonstrate that the physical errors of this platform are low enough that we can actually imagine large-scale error correction devices based on neutral atoms,” said lead author and Harvard University Griffin School of Arts and Sciences. student Simon Evered said. group. “Currently, our error rates are low enough that if we group atoms into logical qubits (information is stored non-locally between the constituent atoms), we can Errors can be even lower than individual atoms.”
The Harvard team’s progress was tracked by former Harvard graduate student and current princeton university, former Harvard University postdoctoral fellow Manuel Endres, now at the California Institute of Technology. Taken together, these advances lay the foundation for quantum error correction algorithms and large-scale quantum computing. All of this means that quantum computing on neutral atomic arrays is reaching its full potential.
“These contributions open the door to very special opportunities in scalable quantum computing, and truly exciting times ahead for the field as a whole,” Lukin said.
Reference: “High-fidelity parallel entanglement gates on neutral atom quantum computers” Simon J. Evered, Dolev Bluvstein, Marcin Kalinowski, Sepehr Ebadi, Tom Manovitz, Hengyun Zhou, Sophie H. Li, Alexandra A. Geim, Tout T Wang, Nishad Maskara, Harry Levine, Julia Semeghini, Markus Greiner, Vladan Vretić, Mikhail D. Lukin, October 11, 2023. Nature.
DOI: 10.1038/s41586-023-06481-y
This research was supported by the U.S. Department of Energy’s Quantum Systems Accelerator Center. Ultracold Atom Center. National Science Foundation. Army Research Office Interdisciplinary University Research Initiative.And thatDARPAOptimization with a noisy intermediate-scale quantum device program.
Source: scitechdaily.com