IBM researchers hold components of the Loon quantum computer
IBM
In the competitive landscape of developing error-resistant quantum supercomputers, IBM is adopting a unique approach distinct from its primary rivals. The company has recently unveiled two new quantum computing models, dubbed Nighthawk and Loon, which may validate its methodology and deliver the advancements essential for transforming next-gen devices into practical tools.
IBM’s design for quantum supercomputers is modular, emphasizing the innovation of connecting superconducting qubits both within and across different quantum units. When this interconnectivity was first proposed, some researchers expressed skepticism about its feasibility. Jay Gambetta from IBM noted that critics implied to the team, “You exist in a theoretical realm; achieving this is impossible,” which they aim to refute.
Within Loon, every qubit interlinks with six others, allowing for unique connectivity that enables vertical movement in addition to lateral motion. This feature has not been previously observed in existing superconducting quantum systems. Conversely, Nighthawk implements four-way connections among qubits.
This enhanced connectivity may be pivotal in tackling some of the most pressing issues encountered by current quantum computers. The advancements could boost computational capabilities and reduce error rates. Gambetta indicated that initial tests with Nighthawk demonstrated the ability to execute quantum programs that are 30% more complex than those on most other quantum computers in use today. Such an increase in complexity is expected to facilitate further advancements in quantum computing applications, with IBM’s earlier models already finding utility in fields like chemistry.
The industry’s ultimate objective remains the ability to cluster qubits into error-free “logical qubits.” IBM is promoting strategies that necessitate smaller groupings than those pursued by competitors like Google. This could permit IBM to realize error-free computation while sidestepping some of the financial and engineering hurdles associated with creating millions of qubits. Nonetheless, this goal hinges on the connectivity standards achieved with Loon, as stated by Gambetta.
Stephen Bartlett, a researcher at the University of Sydney in Australia, expressed enthusiasm about the enhanced qubit connectivity but noted that further testing and benchmarking of the new systems are required. “While this is not a panacea for scaling superconducting devices to a size capable of supporting genuinely useful algorithms, it represents a significant advancement,” he remarked.
However, there remain several engineering and physical challenges on the horizon. One crucial task is to identify the most effective method for reading the output of a quantum computer after calculations, an area where Gambetta mentioned recent IBM progress. The team, led by Matthias Steffen, also aims to enhance the “coherence time” for each qubit. This measure indicates how long a quantum state remains valid for computational purposes, but the introduction of new connections can often degrade this quantum state. Additionally, they are developing techniques to reset certain qubits while computations are ongoing.
Plans are in place for IBM to launch a modular quantum computer in 2026 capable of both storing and processing information, with future tests on Loon and Nighthawk expected to provide deeper insights.
Topic:
Source: www.newscientist.com
Discover more from Mondo News
Subscribe to get the latest posts sent to your email.













