A University of Michigan astronomer, Sally Ooi, led a study on the star-forming regions of the host galaxy NGC 2366, a typical dwarf irregular galaxy. This study was credited to the Observatorio de Calar Alto, J. van Eymeren (AIRUB, ATNF), and Á.R. López Sánchez. As it turns out, dwarf galaxies such as NGC 2366 experience a delay in expelling gas, which allows for the star-forming regions to hold onto gas and dust longer, promoting the formation and development of more stars. This delays the onset of strong superwinds by 10 million years, resulting in more active star formation. This discovery was published in the Astrophysical Journal.
This delay offers astronomers a unique opportunity to study a scenario similar to the dawn of the universe, when ultraviolet light begins to ionize hydrogen, changing the universe from opaque to transparent. By observing low-metallicity dwarf galaxies with large amounts of ultraviolet radiation, scientists can gain insight into these early stages of the universe. The use of new technology from the Hubble Space Telescope allows researchers to observe the light of triple ionized carbon in these galaxies. This observational evidence supports the delayed onset of strong superwinds and a greater amount of ultraviolet radiation in these galaxies.
Thanks to these discoveries, scientists may gain a better understanding of the nature of galaxies seen at the dawn of the universe. This information could be important for the upcoming James Webb Space Telescope. The study was published in the Astrophysical Journal and the Astrophysics Journal Letter. The research team involved in these studies included Michelle C. Jecmen, MS Oey, Amit N. Sawant, Ashkviz Danekar, Sergiy Silic, Linda J. Smith, Jens Melinder, Klaus Reiter, Matthew Hayes, Anne E. Jascott, Daniela Calzetti, Yu-Hua Chu, and Bethan L. James. Ultimately, these findings provide valuable insight into the formation and development of stars in low-metallicity dwarf galaxies.
Source: scitechdaily.com