Wind and Solar Energy Projects Are Overwhelming America’s Antiquated Electrical Grids

An explosion in proposed clean energy ventures has overwhelmed the system for connecting new power sources to homes and businesses.
Plans to install 3,000 acres of solar panels in Kentucky and Virginia are delayed for years. Wind farms in Minnesota and North Dakota have been abruptly canceled. And programs to encourage Massachusetts and Maine residents to adopt solar power are faltering.
The energy transition poised for takeoff in the United States amid record investment in wind, solar and other low-carbon technologies is facing a serious obstacle: The volume of projects has overwhelmed the nation’s antiquated systems to connect new sources of electricity to homes and businesses.
So many projects are trying to squeeze through the approval process that delays can drag on for years, leaving some developers to throw up their hands and walk away.
It now takes roughly four years, on average, for developers to get approval, double the time it took a decade ago. And when companies finally get their projects reviewed, they often learn, to their surprise, that existing power lines are too clogged and the cost of connecting is prohibitive.
“From our perspective, the interconnection process has become the No. 1 project killer,” said Piper Miller, vice president of market development at Pine Gate Renewables, a major solar power and battery developer.
“It doesn’t matter how cheap the clean energy is,” said Spencer Nelson, managing director of research at ClearPath Foundation, an energy-focused nonprofit. “If developers can’t get through the interconnection process quickly enough and get enough steel in the ground, we won’t hit our climate change goals.”
In the largest grids, such as those in the Midwest or Mid-Atlantic, a regional operator manages the byzantine flow of electricity from hundreds of different power plants through thousands of miles of transmission lines and into millions of homes.
Before a developer can build a power plant, the local grid operator must make sure the project won’t cause disruptions — if, for instance, existing power lines get more electricity than they can handle, they could overheat and fail. After conducting a detailed study, the grid operator might require upgrades, such as a line connecting the new plant to a nearby substation. The developer usually bears this cost. Then the operator moves on to study the next project in the queue.
This process was fairly routine when energy companies were building a few large coal or gas plants each year. But it has broken down as the number of wind, solar and battery projects has risen sharply over the past decade, driven by falling costs, state clean-energy mandates and, now, hefty federal subsidies.
“The biggest challenge is just the sheer volume of projects,” said Ken Seiler, who leads system planning at PJM Interconnection. “There are only so many power engineers out there who can do the sophisticated studies we need to do to ensure the system stays reliable, and everyone else is trying to hire them, too.”
Delays can upend the business models of renewable energy developers. As time ticks by, rising materials costs can erode a project’s viability. Options to buy land expire. Potential customers lose interest.
Today, that land is sitting empty. Silicon Ranch hasn’t received feedback from PJM and now estimates it may not be able to bring those solar farms online until 2028 or 2029. That creates headaches: The company may have to decide whether to buy the land before it even knows whether its solar arrays will be approved.
“It’s frustrating,” said Reagan Farr, the chief executive of Silicon Ranch. “We always talk about how important it is for our industry to establish trust and credibility with local communities. But if you come in and say you’re going to invest, and then nothing happens for years, it’s not an optimal situation.”
A potentially bigger problem for solar and wind is that, in many places around the country, the local grid is at capacity, unable to absorb more power.
These costs can be unpredictable. In 2018, EDP North America, a renewable energy developer, proposed a 100-megwatt wind farm in southwestern Minnesota, estimating it would have to spend $10 million connecting to the grid. But after the grid operator completed its analysis, EDP learned the upgrades would cost $80 million. It canceled the project.
That creates a new problem: When a proposed energy project drops out of the queue, the grid operator often has to redo studies for other pending projects and shift costs to other developers, which can trigger more cancellations and delays.
It also creates perverse incentives, experts said. Some developers will submit multiple proposals for wind and solar farms at different locations without intending to build them all. Instead, they hope that one of their proposals will come after another developer who has to pay for major network upgrades. The rise of this sort of speculative bidding has further jammed up the queue.
“Imagine if we paid for highways this way,” said Rob Gramlich, president of the consulting group Grid Strategies. “If a highway is fully congested, the next car that gets on has to pay for a whole lane expansion. When that driver sees the bill, they drop off. Or, if they do pay for it themselves, everyone else gets to use that infrastructure. It doesn’t make any sense.”
A better approach, Mr. Gramlich said, would be for grid operators to plan transmission upgrades that are broadly beneficial and spread the costs among a wider set of energy providers and users, rather than having individual developers fix the grid bit by bit, through a chaotic process.
But this sort of proactive planning is rare, since utilities, state officials and businesses often argue fiercely over whether new lines are necessary — and who should bear the cost.
“The hardest part isn’t the engineering, it’s figuring out who’s going to pay for it,” said Aubrey Johnson, vice president of system planning at MISO.
“There’s a lesson there,” Mr. Gahl said. “You can pass big, ambitious climate laws, but if you don’t pay attention to details like interconnection rules, you can quickly run into trouble.”
Category: Science
Source: NYTimes Science