The experimental vehicle named Ingenuity traveled to the red planet with the Perseverance rover, which is also preparing for its main science mission.
Before heading off to search for signs of long ago Martian microbes, NASA’s Perseverance rover will first undertake what may be the most technologically exciting part of its mission: flying a helicopter.
NASA officials announced on Tuesday that they had selected the site for this demonstration of extraterrestrial hovering — just north of where it landed.
“That area naturally needs to be flat,” Håvard Grip, the NASA engineer who serves as the chief pilot for Ingenuity’s flights, said during a news conference on Tuesday, “and it needs to have few obstacles — rocks and the like — that could pose a danger to the helicopter on landing.”
The rover has already driven past that location and will now head back. Perseverance will carefully drop off Ingenuity and then back away to observe the flights from about 200 feet away. Ingenuity is scheduled to take off no earlier than April 8, although Bob Balaram, the chief engineer of Ingenuity, said that could move up or back by a few days.
“It will have 31 Earth days to attempt to be the first helicopter to fly on another planet,” said Lori Glaze, director of NASA’s planetary science division. “It isn’t intended to collect science, but because its mission is so focused, it is, at its core, innovative.”
NASA officials have described this as a “Wright brothers moment” for space exploration, and on Tuesday, the agency revealed that Ingenuity includes an artifact from the first Wright airplane that took off from Kitty Hawk, N.C., in 1903.
“We are very proud to honor that experimental aircraft from long ago by carrying a small piece of fabric,” Dr. Balaram said.
The fabric is about the size of a postage stamp and attached to a cable on the underside of the solar panel, Dr. Balaram said.
Ingenuity is in essence the aerial counterpart of Sojourner, a demonstration of a novel technology that may be used more extensively on later missions. The body of Ingenuity is about the size of a softball with four spindly legs sticking out. Two sets of blades, each about four feet from tip to tip, will spin in opposite directions to generate lift.
Flying on Mars is not a trivial endeavor. There is not much air to push against to generate lift. At the surface of Mars, the atmosphere is just 1/100th as dense as Earth’s. The lesser gravity — one-third of what you feel here — helps with getting airborne. But taking off from the surface of Mars is comparable to flying at an altitude of 100,000 feet on Earth. No helicopter on our planet has flown that high, and it’s more than two times the typical flying altitude of jetliners.
Using a processing chip that is comparable to what was found in cellphones a few years ago, Ingenuity has about 150 times the computing power available to the much larger Perseverance rover.
“It provides the computing, which is necessary for a lot of the navigation and image processing functions” Dr. Balaram said.
The first flight is to be a modest up-and-down, rising up to an altitude of just 10 feet. “And then we will hover in place for about 30 seconds and make a turn with the helicopter while we’re hovering,” Dr. Grip said. “And then come down and land again.”
Ingenuity will make up to five flights. The first three are designed to test basic capabilities of the helicopter. The final two flights could travel farther, but NASA officials did not want to speculate how much farther.
“Everything is going great so far,” Kenneth Farley, the mission’s project scientist, said last week during a virtual presentation at the Lunar and Planetary Science Conference. “But this is mostly the checkout phase. We’re not actually doing full-bore science yet.”
Dr. Farley said the scientists have already spotted signs of wind erosion on some rocks. Other rocks looked as if they had shaped by the flow of water. “This is quite promising for our study,” he said. The scientists also saw rocks with holes with them, which might be volcanic rocks that trapped bubbles of gas in them as they cooled.
The main science exploration will begin in early summer after the end of the Ingenuity tests.
Perseverance cannot take a direct route to a river delta at the rim of Jezero because of a treacherous field of sand dunes that lies between. Instead it will drive around the sand dunes.
The team members are still deciding whether to go to the north, a faster route, or to the south, which looks more geologically intriguing because it includes sites with mineral deposits that might be remnants of the river delta.
That points to lighter elements like oxygen mixed in with the iron and sulfur that make up most of the core, Dr. Stähler said. This finding could further understanding of how Mars and other rocky planets formed.
Never miss an eclipse, a meteor shower, a rocket launch or any other astronomical and space event that's out of this world.
Category: Technology
Source: New York Times