We and our partners use cookies to Store and/or access information on a device. We and our partners use data for Personalised ads and content, ad and content measurement, audience insights and product development. An example of data being processed may be a unique identifier stored in a cookie. Some of our partners may process your data as a part of their legitimate business interest without asking for consent. To view the purposes they believe they have legitimate interest for, or to object to this data processing use the vendor list link below. The consent submitted will only be used for data processing originating from this website. If you would like to change your settings or withdraw consent at any time, the link to do so is in our privacy policy accessible from our home page..
Researchers have developed a significantly tougher oxide glass using paracrystallization, paving the way for more durable and damage-resistant glass products in the future. (Stock video illustrating the concept of a super strong cell phone.)
Simulated structure of glassy (left) and paracrystalline (right) grossular. The atoms of the elements oxygen, silicon, aluminum, and calcium (from small to large) are colored lighter the higher the degree of order in the surrounding structure. Credit: Hu Tang
Even after a drop in pressure and temperature to normal ambient conditions, the paracrystalline structures in the aluminosilicate glass remain. The penetration of the glass with these structures results in the toughness of the glass being many times higher than before paracrystallization. It now reaches a value of up to 1,99 ± 0,06 MPa (m)¹/². This is a toughness never before measured for oxide glasses. At the same time, the transparency of the glass is not seriously affected by the paracrystalline structures.
Dr. Hu Tang, first author of the study, in front of a high-pressure press at the Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI). Credit: UBT / Chr. Wißler
The researchers explain the extraordinary strengthening of the glass by the fact that forces acting on the glass from outside, which would normally lead to breakage or internal cracks, are now primarily directed against the paracrystalline structures. They dissolve areas of these structures and transform them back into an amorphous, random state. In this way, the glass as a whole acquires greater internal plasticity, so that it does not break or crack when it is exposed to these or even to stronger forces.
“Our discovery highlights an effective strategy for developing highly damage-tolerant glass materials, which we plan to pursue with our research in the coming years,” said Dr. Hu Tang, first author of the new study.
Email address is optional. If provided, your email will not be published or shared.
Scientists have created one of the most detailed 3D images of the synapse, the important juncture where neurons communicate with each other through an exchange…
Copyright © 1998 – 2023 SciTechDaily. All Rights Reserved.
Category: Technology
Source: SciTech Daily