Climate change affects our planet and our lives in many ways. Dry the atmosphere To Increase in home runs Climate change accelerates glacial melt with each Major League Baseball season. Greenland Ice Sheet The land ice mass that covers about 80% of Greenland. When glaciers melt, icebergs form, a process called “iceberg formation.” Glacier collapse Recent climate change has increased the rate at which icebergs are flowing from the Greenland Ice Sheet into the North Atlantic.
Scientists have found that in the past, large increases in the rate of glacial collapse have disrupted important ocean current systems in the Atlantic Ocean. Atlantic Meridional Gyre Or as the AMOC, it carries warm water north and cold water south, affecting global temperatures and moving nutrients across the Atlantic Ocean, meaning that disrupting the AMOC could change the climate and destabilize marine ecosystems. Recently, scientists conducted a study to determine whether the current increase in glacier collapse could disrupt the AMOC.
For this study, the researchers developed a method to quantify glacial runoff during past periods of increased glacial collapse in the North Atlantic that disrupted the AMOC. Heinrich Event They began by looking at present-day glaciers in the North Atlantic and the Arctic. As icebergs break up, they deposit sediment. This sediment includes sand and rocks from the land below the ice sheet, as well as the remains of organisms that lived on the ice sheet. When the icebergs melt at sea, the sediment is released and sinks to the ocean floor.
Scientists observed modern glaciers melting and measured the average amount of sediment, by volume, that they released. Using this average, the researchers estimated how much ice was released during past Heinrich events, based on the amount of sediment that was deposited on the floor of the North Atlantic Ocean.
Scientists used this method to estimate the total amount of ice lost during 10 Heinrich events (the last of which) that occurred over the past 140,000 years. Glacial Cycle Previous scientists had determined the duration of Heinrich events, which allowed the researchers to estimate the ice runoff rate during each event. The researchers compared their estimated runoff rates to current ice runoff rates and found that current ice runoff rates are similar to those of previous mid-sized Heinrich events that disrupted the AMOC. However, the scientists who conducted the study also noted that the AMOC is currently stable.
The researchers suggested two factors that could help explain why the current increase in glacial collapse is not disrupting the AMOC as much as it has in the past. First, the researchers think that the AMOC was stronger when the current glacial runoff rate began to increase than it was at the start of past Heinrich events, which may make the current AMOC more resistant to disruptions. Second, each of the 10 Heinrich events the scientists used in their study lasted about 250 years, while the faster glacial collapse seen today may have been due to a slowdown in the early Heinrich events. It began in recent decades They suggested that AMOC collapse could only occur after a longer period of increased glacier calving than has happened previously.
If the rate of glacial calving continues to increase by the time the AMOC collapses, the size of the Greenland Ice Sheet may limit its influence on the AMOC. The researchers noted that if the Greenland Ice Sheet continues to melt at its current rate, the rate of calving will slow before 250 years have passed. The icebergs that caused the Heinrich events in the last glacial cycle broke off from a much larger ice sheet. Laurentide Ice Sheet It no longer exists.
The scientists who conducted the study said that freshwater runoff from the melting Greenland Ice Sheet could also disrupt the AMOC, but its impact would be less severe than ice runoff. However, they noted that freshwater runoff is likely to increase as glacial collapse slows in the coming decades, which could have unpredictable consequences. The researchers suggested that the scientific community should continue their work to model the impacts of a melting Greenland Ice Sheet as accurately as possible, because, in their words, “the fate of the AMOC remains uncertain.”
Post View: 88
Source: sciworthy.com