A new breakthrough in medical research could lead to personalized therapy for babies in the womb. Scientists have successfully grown small organs, known as organoids, from fetuses for the first time. This allows for monitoring the health of the fetus by cloning its organs.
Organoids are complex 3D models of organs made from human cells, retaining the DNA of the original cells, in this case, amniotic fluid cells. These organoids mimic human tissue and provide a more detailed view of any malformations compared to traditional imaging techniques like MRI or ultrasound.
Developed by researchers at UCL and Great Ormond Street Hospital (GOSH), this new technology enables a functional assessment of a baby’s congenital condition before birth. This groundbreaking method does not involve access to fetal tissue and is a significant advancement in prenatal diagnosis.
Lead author Dr. Mattia Gerli highlights the potential of organoids to revolutionize the pharmaceutical industry and clinics, particularly in fetal development. The study focuses on utilizing amniotic fluid cells to create organoids for prenatal medicine.
Growth process of mini organs
The process involves extracting cells from amniotic fluid, identifying tissue-specific stem cells, and culturing them to form organoids such as lungs, intestines, and kidneys. These organoids show similar functions and gene expressions to the corresponding organs.
In a study comparing organoids from infants with congenital diaphragmatic hernia to healthy infants, researchers found that treatments could be monitored at the cellular level. This breakthrough enables more information for parents during early pregnancy and expands research in fetal development beyond legal limitations.
Gerli emphasizes the potential of organoids in studying human development and advancing prenatal medicine. This innovation opens up a new field of research that was previously limited due to legal restrictions on fetal sampling.
The future of personalized therapy for babies in the womb looks promising with the use of organoids in medical research and fetal diagnosis.
Source: www.sciencefocus.com