A new study led by Harvard Medical School has revealed the neurological foundation of daydreaming. Conducted in mice, the study found that neurons in the visual cortex fired in patterns similar to those seen during the viewing of images, indicating daydreaming. This was especially pronounced during early daydreams and could predict future brain responses to visual stimuli, implying a role in brain plasticity. The study suggests that daydreaming may play a role in learning and memory processes in mice and potentially in humans. Credit: SciTechDaily.com
However, most neuroscientists do not understand what happens in the brain during daydreaming. A team of researchers at Harvard Medical School used mice to investigate the activity of neurons in the visual cortex of the brain during quiet wakefulness and found that these neurons fire in patterns similar to when the mouse views images, indicating that the mouse was daydreaming about the image. Furthermore, the brain showed the same firing pattern during daydreams as when it was seeing an image, suggesting that the mouse was imagining the image. These daydreams occurred only when the mouse was relaxed and had a calm behavior and small pupils.
The researchers found that mice were biased towards daydreaming about recently viewed images, and this daydreaming was more prominent at the beginning of the day. The daydreams influenced the brain’s future responses to images, indicating a role in brain plasticity. The two regions of the brain, the visual cortex and the hippocampus, were also found to communicate during daydreaming. Subsequent research with imaging tools will examine how these connections change when the brain sees an image.
While it remains an open question whether human daydreams involve similar patterns in the visual cortex, preliminary evidence suggests that a similar process occurs during the recall of visual images. The findings suggest that giving the mind waking downtime is crucial for daydreams, which is important for brain plasticity. This research was published on December 13th in Nature.
Source: scitechdaily.com