Antarctica’s melting ice sheet could retreat faster as warmer ocean water invades underneath it, and rising ocean temperatures could trigger a “runaway” feedback effect that pushes warm water further inland, melting even more ice and accelerating sea-level rise.
As the climate warms, the future of Antarctica’s vast ice sheet remains uncertain, and predictions vary widely about how quickly it will melt and therefore how much it will contribute to sea-level rise. One dynamic that researchers have only recently begun to recognize as a key factor is the intrusion of warmer ocean water beneath the ice.
“The mechanisms of invasion are much more powerful than we previously understood.” Alexander Bradley At the British Antarctic Survey.
Such intrusions are driven by density differences between the freshwater flowing out from beneath the ice sheet and the warmer waters where the ice meets the sea floor, known as the grounding line. They are difficult to observe directly because they occur hundreds of meters beneath the ice, but simulations suggest that in some places the warm waters could extend several kilometers inland.
One model by Alexander Lovell Researchers from the Georgia Institute of Technology in Atlanta found that widespread ice-sheet intrusion could add heat from below, lubricating ice flow along bedrock and more than doubling ice loss from the ice sheet.
Bradley and his colleagues Ian Hewitt Using their model, Oxford researchers explained how the shape of cavities in the ice changes as the ice melts, altering how ocean water flows in.
The researchers found that once ocean water reaches a certain temperature threshold, ice from the ice sheet melts faster than it can be replaced by outflowing ice. If this cavity grows larger, more water could flow under the ice sheet and penetrate further inland, creating a so-called “runaway” positive feedback effect.
“Small changes in ocean temperature lead to dramatic changes in how far warm water can intrude,” Bradley said. The ocean warming needed to cause this effect is within the range expected this century, he said, but models cannot yet predict it for specific ice sheets, and not all ice sheets are equally susceptible to such intrusions.
“This positive feedback could lead to much more intrusion than we thought,” Lovell says. “Whether that’s a tipping point that leads to unrestrained intrusion of ocean water beneath the ice sheet is probably a stretch.”
topic:
Source: www.newscientist.com