In the quest for clean energy and a shift away from fossil fuels, scientists may have uncovered new sources of power, potentially hidden in our mountains. A team of researchers from Germany has identified a vast reservoir of hydrogen gas, generated by rocks formed millions of years ago, through advanced simulations.
This discovery is significant as hydrogen (H2) as a power source does not emit greenhouse gases into the atmosphere, making it a more sustainable alternative to fossil fuels that contribute to climate change. Additionally, the production of hydrogen results in water instead of harmful emissions. However, the challenge lies in the fact that natural hydrogen production is rare, with the current synthetic production relying on fossil fuels.
The main hurdle in hydrogen production is sourcing it naturally. While geological processes can generate natural hydrogen without the need for fossil fuels, the availability of large accessible reserves remains uncertain. The recent study conducted by German researchers could potentially address this issue.
“We may be on the brink of a new era in natural hydrogen exploration,” said Dr. Frank Zworn, the lead author of the study published in the journal Advances in Science. “This could pave the way for a new natural hydrogen industry.”
Researchers at the GFZ Helmholtz Center for Geosciences in Germany utilized simulations of plate tectonic processes to identify a substantial reserve of natural hydrogen.
Natural hydrogen can be generated through various methods, such as bacterial transformation of organic matter or the splitting of water molecules due to radioactivity in the Earth’s crust. However, one of the most promising natural methods involves a geological process known as “serpentinization,” where rocks from the Earth’s mantle react with water to release H2 gas.
According to researchers, when these hydrogen-rich rocks are situated near the Earth’s surface, they can create potential zones for large-scale hydrogen production via excavation. These rocks are brought closer to the surface through processes such as continental rifting and mountain formation over millions of years.
By analyzing two processes, researchers determined that mountain formation offers ideal conditions for hydrogen generation. The combination of cold environments in mountains and increased water circulation could enhance hydrogen levels significantly. Simulations showed that rocks emerging through mountain formations have 20 times the hydrogen capacity compared to those brought to the surface via continental rifting.
Signs of natural hydrogen production have already been observed in mountainous regions such as the Pyrenees, European Alps, and Balkans. The research team anticipates that their findings will inspire further exploration of natural hydrogen in these areas and other mountainous regions.
Professor Sasha Brune, the head of the geodynamic modeling section at GFZ, emphasized the economic prospects tied to natural hydrogen. He stated, “It is now crucial to delve deeper into the migration pathways of microbial ecosystems that consume hydrogen, both shallow and deep, and to gain a better understanding of where potential hydrogen reservoirs can be formed.”
Read More:
Source: www.sciencefocus.com