Are Contact Lens Batteries the Future of Energy Storage?

SEI 258681427

Faraday 2 battery developed by Superdielectrics

Superdielectrics

The innovative battery storage solution, utilizing SuperCapacitor Technology, may “jump” traditional lithium-ion batteries, transforming the landscape for renewable energy storage and use, according to its creator.

On July 8th, British firm SuperDielectrics unveiled its new prototype storage system, dubbed the Faraday 2, at an event in central London. Incorporating a polymer designed for contact lenses, this system boasts a lower energy density than lithium-ion batteries but claims numerous advantages, such as quicker charging, enhanced safety, reduced costs, and a recyclable framework.

“The current energy storage market at home is reminiscent of the computer market around 1980,” said SuperDielectrics’ Marcus Scott while addressing journalists and investors. “Access to clean, reliable, and affordable electricity isn’t a future goal; it’s now a practical reality, and we believe we are creating the technology to support it.”

Energy storage is pivotal for the global transition to green energy, crucial for providing stable electricity despite the intermittent nature of wind and solar power. While lithium-ion batteries dominate the storage technology market, they present challenges, including high costs, limited resources, complex recycling processes, and safety risks like overheating explosions.

With its aqueous battery design grounded in supercapacitor technology, SuperDielectrics aims to address these challenges. Supercapacitors store energy on material surfaces, facilitating extremely rapid charge and discharge cycles, albeit with lower energy density.

The company’s design employs a zinc electrolyte, separated from the carbon electrode by a polymer membrane. SuperDielectrics asserts that this membrane technology is cost-effective, utilizing abundant raw materials, thus unlocking a new generation of supercapacitors with significant energy storage capabilities.

During the event, the company’s CEO Jim Heathcote mentioned that the technology could outperform lithium-ion systems in renewable energy storage.

The Faraday 2 builds on the earlier Faraday 1 prototype launched last year, claiming to double the energy density. The Faraday 2 operates at 1-40 Wh/kg, allowing for faster charging times, which will harness fleeting spikes in renewable energy production, as noted by Heathcote.

However, Gareth Hinds from the UK National Physical Laboratory points out that the technology still lags behind lithium-ion batteries, which can achieve around 300 Wh/kg at the cell level. Andrew Abbott of the University of Leicester adds that the energy density now offered by SuperDielectrics is akin to that of lead-acid batteries commonly used in automobiles and backup power systems. “There are no immediate plans among leading manufacturers to transition,” he states.

Marcus Newborough, scientific advisor at SuperDielectrics, acknowledges that they are still “on a journey” to enhance the system’s energy density. “We are aware of our high theoretical energy density,” he mentioned, noting the company’s commitment to realizing this potential in the coming years, aiming for a commercial energy storage solution ready for launch by the end of 2027.

Despite the optimism, Hinds remains skeptical about the technology competing with lithium-ion batteries regarding energy density. “Clearly, it’s an early-stage development, and while they continue to push for higher energy density, achieving lithium-ion levels is a significant challenge due to strict limitations,” he comments.

Nonetheless, he suggests that there could be a market for larger storage solutions that provide lower energy density but at a much more affordable price than lithium-ion batteries and with a longer lifespan.

Sam Cooper from Imperial College, London, concurs: “If we can develop a system offering equal energy storage capacity to the Tesla Powerwall, regardless of size or weight, and at a cost of 95% less, that would represent a groundbreaking achievement.”

Source: www.newscientist.com

Leave a Reply

Your email address will not be published. Required fields are marked *