Astronomers Uncover Strange Explosion from the Supermassive Black Hole in NGC 3783

Utilizing ESA’s XMM-Newton along with the X-ray Imaging and Spectroscopy Mission (XRISM)—a collaborative endeavor led by JAXA, ESA, and NASA—astronomers detected an ultrafast outflow from the supermassive black hole in NGC 3783, moving at 19% the speed of light (57,000 km/s).

An artist’s conception of NGC 3783’s wind-blown supermassive black hole. Image credit: ESA/ATG Europe.

NGC 3783 is a luminous barred spiral galaxy located about 135 million light-years away in the Centaurus constellation.

This galaxy was initially discovered by British astronomer John Herschel on April 21, 1835.

Also referred to as ESO 378-14, LEDA 36101, or 2XMM J113901.7-374418, it is a prominent member of the NGC 3783 group, which contains 47 galaxies.

NGC 3783 hosts a rapidly rotating supermassive black hole with a mass of 2.8 million solar masses.

“We have never witnessed a black hole producing winds at such speeds before,” stated Dr. Li Gu, an astronomer at the Netherlands Space Research Organization (SRON).

“Swift bursts of X-ray light from a black hole immediately provoke superfast winds, and for the first time, we observe how these winds develop within just a day.”

During 10 days of observations, mainly using the XRISM space telescope, astronomers monitored the emergence and acceleration of a burst from NGC 3783’s supermassive black hole.

While such explosions are typically attributed to intense radiation, in this instance, the likely cause is a sudden shift in the magnetic field, akin to solar flares caused by the Sun’s outbursts.

It is known that supermassive black holes emit X-rays, but this marks the first occasion where astronomers have distinctly observed rapid ejections during these X-ray bursts.

This finding emerged from the longest continuous observation conducted by XRISM to date.

Over these 10 days, scientists noted fluctuations in the brightness of the X-rays, particularly within the soft X-ray band.

Such fluctuations, including explosions lasting three days, are not uncommon for supermassive black holes.

What sets this explosion apart is the simultaneous expulsion of gas from the black hole’s accretion disk—a swirling disc of matter in orbit around the black hole.

This gas was expelled at astonishing speeds, hitting 57,000 km/s, or 19% of the speed of light.

Researchers identified the origin of this gas as a region approximately 50 times larger than the black hole itself.

Within this chaotic region, gravitational and magnetic forces are in extreme interaction.

The emission is believed to be the result of a phenomenon known as magnetic reconnection, which occurs when the magnetic field rapidly reorganizes and releases vast amounts of energy.

“This is an unparalleled opportunity to explore the mechanisms behind ultrafast ejections,” Dr. Gu remarked.

“The data indicate that magnetic forces, resembling those involved in coronal mass ejections from the Sun, are responsible for the acceleration of the outflow.”

“A coronal mass ejection occurs when a hefty plume of hot solar plasma is hurled into space.”

“In contrast, supermassive black holes can produce similar events, but these eruptions are 10 billion times more potent and far smaller than solar phenomena we’ve observed.”

Scientists propose that the black hole activity observed may mirror its solar counterpart, driven by an abrupt burst of magnetic energy.

This challenges the widely-held theory that black holes expel matter predominantly through intense radiation or extreme heat.

These findings provide fresh insights into how black holes not only consume matter but can also expel it back into space under specific conditions.

This feedback process plays a critical role in galaxy evolution, affecting nearby stars and gas and potentially contributing to the structure of the universe as we know it.

“This discovery highlights the effective collaboration that underpins all ESA missions,” noted XMM-Newton project scientist and ESA astronomer Dr. Eric Courkers.

“By focusing on an active supermassive black hole, the two telescopes unveiled something unprecedented: rapid, ultrafast flare-induced winds similar to those generated by the Sun.”

“Interestingly, this suggests that solar physics and high-energy physics may operate in surprisingly similar fashions throughout the universe.”

The team’s paper was published in the December 9, 2025 issue of the journal Astronomy and Astrophysics.

_____

Gu Lee Yi et al. 2025. Investigating NGC 3783 with XRISM. III. Emergence of ultra-high-speed outflow during soft flares. A&A 704, A146; doi: 10.1051/0004-6361/202557189

Source: www.sci.news

Leave a Reply

Your email address will not be published. Required fields are marked *