Google Celebrates Breakthrough: Quantum Computer Exceeds Supercomputer Performance

Google has announced a significant breakthrough in quantum computing, having developed an algorithm capable of performing tasks that traditional computers cannot achieve.

This algorithm, which serves as a set of instructions for guiding the operations of a quantum computer, has the ability to determine molecular structures, laying groundwork for potential breakthroughs in areas like medicine and materials science.

However, Google recognizes that the practical application of quantum computers is still several years away.

“This marks the first occasion in history when a quantum computer has successfully performed a verifiable algorithm that surpasses the power of a supercomputer,” Google stated in a blog post. “This repeatable, beyond-classical computation establishes the foundation for scalable verification and moves quantum computers closer to practical utilization.”

Michel Devore, Google’s chief scientist for quantum AI, who recently received the Nobel Prize in Physics, remarked that this announcement represents yet another milestone in quantum developments. “This is a further advancement towards full-scale quantum computing,” he noted.

The algorithmic advancement, allowing quantum computers to function 13,000 times faster than classical counterparts, is documented in a peer-reviewed article published in the journal Nature.

One expert cautioned that while Google’s accomplishments are impressive, they revolve around a specific scientific challenge and may not translate to significant real-world benefits. Results for two molecules were validated using nuclear magnetic resonance (NMR), akin to MRI technology, yielding insights not typically provided by NMR.

Winfried Hensinger, a professor of quantum technology at the University of Sussex, mentioned that Google has achieved “quantum superiority”, indicating that researchers have utilized quantum computers for tasks unattainable by classical systems.

Nevertheless, fully fault-tolerant quantum computers—which could undertake some of the most exciting tasks in science—are still far from realization, as they would necessitate machines capable of hosting hundreds of thousands of qubits (the basic unit of information in quantum computing).

“It’s crucial to recognize that the task achieved by Google isn’t as groundbreaking as some world-changing applications anticipated from quantum computing,” Hensinger added. “However, it represents another compelling piece of evidence that quantum computers are steadily gaining power.”

A truly capable quantum computer able to address a variety of challenges would require millions of qubits, but current quantum hardware struggles to manage the inherent instability of qubits.

“Many of the most intriguing quantum computers being discussed necessitate millions or even billions of qubits,” Hensinger explained. “Achieving this is even more challenging with the type of hardware utilized by the authors of the Google paper, which demands cooling to extremely low temperatures.”

Hartmut Neven, Google’s vice president of engineering, stated that quantum computers may be five years away from practical application, despite advances in an algorithm referred to as Quantum Echo.

Skip past newsletter promotions

“We remain hopeful that within five years, Quantum Echo will enable real-world applications that are solely feasible with quantum computers,” he said.

As a leading AI company, Google also asserts that quantum computers can generate unique data capable of enhancing AI models, thereby increasing their effectiveness.

Traditional computers represent information in bits (denoted by 0 or 1) and send them as electrical signals. Text messages, emails, and even Netflix movies streamed on smartphones consist of these bits.

Contrarily, information in a quantum computer is represented by qubits. Found within compact chips, these qubits are particles like electrons or photons that can exist in multiple states simultaneously—a concept known as superposition in quantum physics.

This characteristic enables qubits to concurrently encode various combinations of 1s and 0s, allowing computation of vast numbers of different outcomes, an impossibility for classical computers. Nonetheless, maintaining this state requires a strictly controlled environment, free from electromagnetic interference, as disturbances can easily disrupt qubits.

Progress by companies like Google has led to calls for governments and industries to implement quantum-proof cryptography, as cybersecurity experts caution that these advancements have the potential to undermine sophisticated encryption.

Source: www.theguardian.com

Leave a Reply

Your email address will not be published. Required fields are marked *