Astounding Discovery: Astronomers Find Iron ‘Rod’ at the Center of a Mysterious Ring Nebula

Astronomers utilizing the WHT Extended Area Velocity Explorer (WEAVE), a cutting-edge instrument aboard the William Herschel Telescope on La Palma Island, have uncovered an intriguing elongated structure of ionized iron within the renowned Ring Nebula.



A composite image of the Ring Nebula featuring four WEAVE/LIFU emission line images. Image credit: Wesson et al., doi: 10.1093/mnras/staf2139.

The Ring Nebula, also known as Messier 57, M57, or NGC 6720, is a classic planetary nebula located approximately 2,000 light-years away in the constellation Lyra.

This nebula was first discovered by the French astronomer Charles Messier in January 1779 while he was on a mission to find comets.

Messier’s report about the discovery of Comet Bode reached fellow astronomer Antoine d’Alquier de Perpois shortly afterward, who subsequently rediscovered the Ring Nebula during his comet observations.

The newly identified rod-shaped cloud of iron atoms resides within the inner layer of this elliptical nebula.

Measuring about 500 times the length of Pluto’s orbit around the sun, this cloud’s atomic mass of iron is comparable to that of Mars.

This iron cloud was detected using the Large Integral Field Unit (LIFU) mode of the innovative WEAVE instrument on the 4.2-meter William Herschel Telescope, part of the Isaac Newton Group.

According to Dr. Roger Wesson, an astronomer from University College London and Cardiff University: “While the Ring Nebula has been extensively studied with various telescopes, WEAVE enables us to observe it in unprecedented detail, providing much richer information than previously available.”

“By continuously collecting spectra across the nebula, we can image it at any wavelength and analyze its chemical composition at any given location.”

“As we process the data and examine the images, we discover a never-before-seen ‘rod’ of ionized iron atoms at the heart of this iconic ring.”

The exact nature of the iron “rods” within the Ring Nebula remains uncertain.

Two potential scenarios emerge: the bar may offer new insights into the nebula’s formation and ejection by its parent star, or (more intriguingly) it could represent an arc of plasma from a rocky planet evaporating during the star’s initial expansion.

Professor Janet Drew, also from University College London, noted: “We need to investigate further, particularly to determine if the newly detected iron coexists with other elements. This could guide us toward the appropriate models to explore.”

“Currently, this crucial information is lacking.”

For more in-depth details, check out the findings published today in the Royal Astronomical Society Monthly Notices.

_____

R. Wesson et al. 2026. WEAVE Imaging Spectroscopy of NGC 6720: Iron Rods in the Ring. MNRAS 546 (1): staf2139; doi: 10.1093/mnras/staf2139

Source: www.sci.news

Leave a Reply

Your email address will not be published. Required fields are marked *