Australian Stingless Bee Honey Exhibits Unique Antibacterial Properties, Research Reveals

Honey sourced from Australian stingless bees, often referred to as sugar bag honeybees, has long been a vital food source and a traditional remedy for ailments such as itching and pain among Indigenous Australian communities. A recent study has examined the antibacterial properties and chemical composition of honey from three species of Australian stingless bees: Tetragonula carbonaria, Tetragonula hockingsii, and Austroplebeia australis. The results revealed these honeys possess strong antibacterial capabilities against various human pathogens, exhibiting efficacy on par with or superior to that of most European honeys derived from Apis mellifera.

Tetragonula carbonaria comb. Image credit: Tobias Smith.

Antibiotic resistance poses a significant global health issue.

Numerous natural substances have developed complex defenses against microbial threats and may serve as potential therapeutic agents.

While the medicinal qualities of European honey have been extensively researched, the therapeutic potential of Australian stingless bee honey is still in its early stages.

Kenya Fernandez, a researcher from the University of Sydney, noted:

“Unlike honey from European honeybees, which predominantly depends on hydrogen peroxide for its antibacterial effects, the honey from Australian stingless bees demonstrates high levels of hydrogen peroxide along with non-peroxide activity, making it a robust and versatile candidate for therapy.”

The study found that the honey retained antibacterial properties even without hydrogen peroxide, indicating that these traits are inherent to the honey.

“Bee Manuka honey’s notable non-oxide antibacterial activity is a key factor behind its commercial success,” Dr. Fernandez added.

“However, it heavily relies on a specific nectar source from the Myrtle plant (Leptospermum).”

“In contrast, the consistent antibacterial effectiveness of heat-treated non-toxic honey from Australian bees—regardless of various locations and nectar sources—highlights the unique qualities of these bees.”

Professor Dee Carter at the University of Sydney remarked:

Researchers are hopeful that this reliability will enhance the potential for commercial health applications.

Nonetheless, challenges concerning scalability persist. Each stingless bee hive produces roughly 0.5 liters of honey annually, complicating large-scale production.

“Although the yields are modest, these hives require less upkeep than traditional bee hives, enabling beekeepers to manage a greater number of hives,” stated Dr. Ross Groag from the University of Sydney.

“Encouragingly, the commercial value of honey may foster the growth of more hives and pave the way for scalability in commerce.”

“In the past year, native stingless bee honey has made strides toward local and global commercialization, having received endorsements from Australian and New Zealand food safety authorities.”

“This regulatory backing is crucial in establishing a niche market for high-value, low-volume products.”

The survey results were published on May 21st in the journal Applied and Environmental Microbiology.

____

Kenya E. Fernandez et al. 2025. Potent antibacterial activity and unique physicochemical properties of honey from Australian stingless bees Tetragonula carbonaria, Tetragonula hockingsii, and Austroplebeia australis. Applied and Environmental Microbiology 91 (6); doi:10.1128/aem.02523-24

Source: www.sci.news

Leave a Reply

Your email address will not be published. Required fields are marked *