Gene-Edited Babies: The Future of Genetics, but Not All CRISPR Startups Will Lead the Way

Babies Crawling in Diapers

Every Baby Has About 100 New Genetic Mutations

Mood board – Mike Watson / Getty Images

Let me share some eye-opening news. Every child embodies genetic experimentation, with nature exhibiting indifference if things don’t go as planned. Our genomes present a complex tapestry shaped by conflicting evolutionary forces, and each of us carries roughly one hundred novel mutations.Each birth introduces a unique mutation into the genetic pool.

Thus, I anticipate that in the future, gene editing of embryos will become commonplace once humanity confronts various daunting challenges, including climate change. There may come a time when natural conception is perceived as reckless.

Reaching that future is no trivial task. However, if you’ve been following the buzz from the tech community this year, it’s no surprise you feel optimistic. By 2025, we discovered at least three startups focused on creating gene-edited babies.

So, is the dawn of CRISPR on the horizon, or could these startups potentially face backlash?

Preventing Genetic Diseases

Among these startups, Manhattan Genomics and Preventive aim not for enhancement but to avert severe genetic disorders. This noble objective is commendable, but it’s important to note that many of these conditions can already be forestalled through existing screening techniques, such as genetic testing of IVF embryos prior to implantation, a process with a high rate of success.

So why pursue the development of gene-edited embryos, a complex and legally challenging endeavor, when IVF screening already provides a viable solution?

Preventive did not respond to inquiries, but a spokesperson from Manhattan Genomics noted that couples undergoing IVF often don’t have enough viable embryos to choose from. By editing disease-carrying embryos instead of discarding them, the likelihood of having a healthy child increases. The company believes that gene editing could enhance the chances for approximately ten embryos affected by Huntington’s disease and thirty-five embryos affected by sickle cell disease annually for couples using IVF.

However, this translates to a very limited number of births. Approximately one-third of IVF embryos lead to viable births, and this percentage may drop further post-editing. Furthermore, significant challenges accompany this approach. Although CRISPR technology has advanced, there’s still a risk of introducing harmful mutations as unintended consequences.

Moreover, the editing process often fails to initiate or can continue even after the embryo has begun dividing. This results in various genetic alterations within the same embryo, a phenomenon known as mosaicism. The illegal CRISPR children from China come to mind, announced in 2018.

Consequently, it becomes uncertain whether the mutation causing the disease was indeed corrected in the edited embryo and whether any harmful mutations emerged as a result.

Doing It Right

Solutions do exist. For instance, some gene-edited animals have been developed by modifying stem cells and then cloning them once the desired alterations have been confirmed. However, I previously explained that cloned animals often exhibit various health issues and unexpected traits, underscoring the necessity for foundational research and rigorous oversight should this approach be pursued for humans.

We have two strong examples of responsibly introducing embryonic gene editing through mitochondrial donation initiatives in the UK and Australia. Mitochondria are cellular energy producers that contain their own small genomes. Mutated mitochondria can lead to severe health issues if passed down to offspring, but this risk can be mitigated by substituting them with healthy donor mitochondria.

A version of mitochondrial technology emerged in private fertility clinics in the US during the 1990s, during which humanity witnessed the first genetically modified human. Initial attempts led to the banning of this technology in the US.

While mitochondrial donation was previously prohibited in the UK, changes in the law came about following advocacy from patient groups, extensive dialogue, and consultation. It now receives approvals on a trial basis as needed.Australia is pursuing a similar path.

What Is the Real Objective?

This is the ideal framework for introducing new reproductive technologies: transparently, legally, and under independent supervision. Yet, at least two startups are reportedly conducting experiments in countries with laxer gene editing laws.

This does not advance science, as trust in the claims made by private companies acting without regulatory oversight diminishes. Conversely, this approach could prompt a backlash, leading to more countries tightening regulations against gene editing.

For these billionaires – with Preventive’s investors including notable figures like OpenAI’s Sam Altman and Coinbase’s Brian Armstrong – if your genuine intention is to combat severe genetic diseases, investing in nonprofit research organizations could yield significantly greater results.

Or is the ultimate aim to engineer your own child instead of assisting other couples in achieving healthy pregnancies? This is clearly the mission of the third startup, Bootstrap Bio.

In next month’s column, we will explore whether gene editing can truly be utilized to enhance our children.

Topics:

Source: www.newscientist.com

One thought on “Gene-Edited Babies: The Future of Genetics, but Not All CRISPR Startups Will Lead the Way

Leave a Reply

Your email address will not be published. Required fields are marked *