Ancient Rocks Reveal the First Signs of Earth’s Structural Activity

The Pilbara Craton in Western Australia features rocks that date back 3.5 billion years.

Elizabeth Czitronyi / Alamy

Rocks from Australia reveal that tectonic plates were shifting as far back as 3.5 billion years ago, a breakthrough that alters our understanding of the onset of plate tectonics over subsequent hundreds of millions of years.

Currently, along with roughly eight major hard rock plates on Earth’s surface, several smaller plates are interacting with the softer rock layer beneath. When these plates’ edges grind against one another, it can lead to sudden geological upheavals, such as earthquakes, and gradual processes like mountain range formation.

However, there is disagreement among geologists regarding the configurations of these ancient plates and their movements. Some researchers claim to have found indications of tectonic activity as far back as 4 billion years ago when the planet was significantly hotter; others argue that more compelling evidence is noted after 3.2 billion years ago.

Much of this data derives from the chemical compositions of rocks, which suggest past movements. Despite this, records detailing the interactions of early plates remain scarce, which is regarded as critical evidence supporting plate tectonics.

Recently, Alec Brenner and his team from Yale University claim to have uncovered substantial evidence of relative plate movement dating back 3.5 billion years in the eastern Pilbara Craton of Western Australia. They traced the magnetic orientation of rocks aligned with Earth’s magnetic field, observing shifts similar to how a compass needle changes direction when the ground moves.

Brenner and colleagues initially dated the rock using radioisotope analysis, establishing that at certain times, the rock’s magnetism remained unchanged. By observing this magnetization shift, they demonstrated that the rock mass progressively moved at a rate of several centimeters each year. They compared these findings to similarly examined rocks in the Barberton Greenstone Belt in South Africa, which exhibited no such movement.

“This suggests that some type of plate boundary must exist between these two regions to accommodate that relative movement,” remarked Brenner during his presentation at the Goldschmidt Geochemical Conference in Prague, Czech Republic, on July 9.

“Approximately 3.8 billion years ago, the Pilbara plate transitioned from medium to high latitudes, eventually reaching proximity to Earth’s magnetic poles and, possibly millions of years later, to the latitude of Svalbard.”

“If two plates are moving relative to one another, there must be various dynamic interactions happening between them,” noted Robert Hazen from the Carnegie Institute of Science in Washington, DC. “It cannot be an isolated event.”

Nonetheless, multiple interpretations exist regarding the underlying causes of this movement, according to Hazen. The variability in plate movement rates adds to the confusion, and existing data could align with various theories regarding Earth’s interior structure at that time.

At the very least, this discovery indicates the presence of structural boundaries, according to Michael Brown from the University of Maryland. However, he argues that the nature of rock movement appears dissimilar to contemporary understanding of plate tectonics. “Essentially, the Pilbara plate moved to higher latitudes to prevent stagnation, which is atypical within any current plate structural model.”

Brown posits that this aligns with the theory suggesting the Earth’s crust consisted of numerous smaller plates propelled by a thermal mantle plume during that period. He believes the remnants of these small plates examined by Brenner and his team provide evidence of movement; however, due to their limited representation of the crust, they may not accurately reflect broader Earth movements.

Brenner’s team also discovered indications that the Earth’s magnetic field underwent reversals around 3.46 billion years ago. Unlike today’s magnetic field reversals, which occur every million years, these ancient magnetic shifts seemed to happen much more frequently, over spans of tens of millions of years. This could imply a fundamentally different set of energies and mechanisms at play, as noted by Brenner.

Hazen emphasized that the scarcity of magnetic data leads to ongoing debates about the state of Earth’s magnetic field during that era of its evolution. “I believe this discovery raises the bar significantly,” he asserts. “It represents a vital breakthrough in understanding early magnetic reversals, shedding light on the core’s geomechanics in ways previously unexplored.”

Topic:

Source: www.newscientist.com

Leave a Reply

Your email address will not be published. Required fields are marked *