ALMA Achieves Best-Ever Image of Exoplanet Debris Disk

Using the Atacama Large Millimeter/Submillimeter Array (ALMA), astronomers have unveiled stunning high-resolution images of 24 debris disks—dusty remnants that form after planetary systems complete their formation—showcasing the intricate transitional stages between the birth of planets and fully developed exoplanetary systems.



The ARKS gallery of faint debris disks reveals intricate shapes, including belts with multiple rings and sharp edges. Amber highlights the abundance of dust, while blue indicates carbon monoxide in gas-rich disks. Image credit: Sebastian Marino / Sorcha Mac Manamon / ARKS collaboration.

Young and mature planetary systems feature faint dust belts known as debris disks.

These disks are believed to result from collisions between large planetesimals, given dust’s brief lifespan against radiation and collisions.

Debris disks serve as the extrasolar equivalents of asteroids and the Kuiper Belt in our solar system.

With ages spanning from tens of millions to thousands of years, they offer a unique view into the final assembly of planetary systems.

Furthermore, they enable us to draw connections between protoplanetary disk structures and known mature exoplanetary populations.

Debris disks are significantly darker, appearing hundreds or thousands of times fainter than the luminous, gas-rich disks where planets are born.

Meredith Hughes, an astronomer at Wesleyan University, and her team have surmounted these challenges to produce the most detailed images to date of these disks.

Utilizing ALMA, they captured high-resolution images of 24 debris disks surrounding other stars.

This observation contributes to the ALMA survey aimed at resolving the Outer Kuiper Belt Substructure (ARKS).

“While we’ve often glimpsed ‘baby pictures’ of planet formation, the ‘teenage’ phase has remained elusive,” says Hughes.

Dr. Sebastian Marino, an astronomer at the University of Exeter, noted: “We’re observing genuine diversity—not just simple rings, but multi-ring belts and pronounced asymmetries, illustrating a dynamic and tumultuous phase in planetary history.”

ARKS stands as the largest and highest resolution survey of debris disks, akin to DSHARP, setting a new gold standard in the field.

Approximately one-third of the studied disks display distinct substructures, such as multiple rings and noticeable gaps, suggesting features left over from early planetary formation or shaped by planets over extended timescales.

Some disks retain the complex structure from earlier stages, while others have deteriorated into broad, smooth bands akin to the expected development of our solar system.

Many disks exhibit zones of tranquility and chaos, with vertically raised areas resembling unique objects in our solar system, blending classical Kuiper Belt objects with those disturbed by Neptune’s past migrations.

Some disks maintain gas longer than anticipated. In certain star systems, residual gas can influence the chemistry of developing planets or encourage dust to form extensive halos.

Numerous disks feature bright arcs or eccentric configurations, indicating gravitational effects from unseen exoplanets, scars left by planetary migration, or interactions between gas and dust.

Dr. Luca Matra, an astronomer at Trinity College, Dublin, remarked: “These disks encapsulate a period when planetary orbits were disrupted, akin to the massive impacts that shaped our early solar system.”

“By examining dozens of disks around stars of varying ages and types, ARKS aims to determine if their chaotic features are inherited, influenced by planets, or derived from other cosmic forces.”

“Understanding these nuances may shed light on whether our solar system’s history is unique or part of a common pattern.”

For more on this result, see the latest issue of Astronomy and Astrophysics.

_____

S. Marino et al. 2026. ALMA surveys to resolve the ExoKuiper belt substructure (ARKS). I. Motivation, sample, data reduction, and results overview. A&A 705, A195; doi: 10.1051/0004-6361/202556489

Source: www.sci.news