One of the study participants fell asleep during the experiment.
Mia Lux
Your brain can be gently nudged to tackle complex problems in your sleep, enhancing your ability to solve them upon waking.
Neuroscientists and psychologists are increasingly employing techniques involving sound, touch, movement, and particularly olfactory stimuli to influence dreams. This innovative approach demonstrates potential for applications like helping smokers quit, treating chronic nightmares, and even enhancing creativity.
Now, Karen Koncoly and her team at Northwestern University in Illinois have revealed that this technique may also aid in problem-solving. The researchers enlisted 20 self-identified lucid dreamers—individuals aware that they are dreaming and able to control their narratives—and tasked them with solving puzzles in two sessions within a sleep lab. Each puzzle was associated with unique soundtracks, featuring soothing elements like birdsong and steel drums.
The researchers meticulously monitored participants’ brain and eye movements to pinpoint when they transitioned into the rapid eye movement (REM) phase of sleep, which is known for its vivid and imaginative dreams. Upon entering this phase, a selection of unresolved puzzles was paired with the corresponding soundtracks. Participants were prompted to demonstrate lucidity by executing at least two rapid eye movements from left to right, indicating they were aware of the sound cues while striving to solve the puzzles in their dreams.
The following morning, participants reported that those who listened to the soundtracks during sleep found the puzzle features prominently featured in their dreams, significantly boosting their chances of solving them. Approximately 40% of participants who dreamed about puzzles managed to solve them, while only 17% who didn’t dream of the puzzles could achieve the same.
While the exact reasons behind these findings remain unclear, it’s suggested that pairing sound stimuli with learning tasks while awake may activate the memory of the puzzle when hearing the same sound during sleep, through a process known as targeted memory reactivation. This appears to activate the hippocampus—an essential brain region for memory—prompting what may resemble a spontaneous reactivation of memories that facilitates learning.
Although dreams can manifest at any stage of sleep, Konkoly indicates that targeting REM sleep may enhance problem-solving capabilities. “REM dreams are highly associative and atypical, blending new and prior memories with imaginative thought,” she states. “During this stage, your brain is quite active, potentially allowing for unrestricted access to various sections of your mind.”
Researcher Karen Concoly prepares a participant for the study by fitting a cap to their head that records brain activity.
Karen Konkoly
Tony Cunningham and researchers at Harvard University affirm that this study indicates “individuals may consciously focus on unresolved issues while dreaming.”
However, some experts caution that dream engineering could interfere with the critical functions of sleep, such as clearing toxins from the brain. There are concerns about the potential for companies to exploit these findings by placing ads within personal devices, which Cunningham particularly highlights. “Our senses are already bombarded during waking hours by advertisements, emails, and work stress; sleep remains one of the few times of respite,” he notes.
Koncoly plans to explore why certain individuals exhibit varying responses to sound stimuli on different days. “During this study, I stayed up all night monitoring brainwaves and providing cues during REM sleep. Sometimes participants would signal a response, and other times, they wouldn’t. Occasionally, they would wake and incorporate relevant puzzles into their dreams, while at other times, they simply processed the sound without any further reaction. Why do identical stimuli manifest differently in the same state of consciousness?”
Topic:
This rewrite is optimized for SEO, incorporating relevant keywords, improving readability, and retaining the original HTML formatting, tags, and structure.
Source: www.newscientist.com















