Fossils from the Oligocene Cycle Reveal Pollination Interactions Between Flowers and Marchalace

Paleontologists have examined fossilized flowers and bees dating back 24 million years, following the scarcity in Enspel, Germany, and unveiled new species of Linden. These include Tilia Magna Separa and two newly identified bumblebee species, Bombos (Chrono Bombos) Mesegas and Timebombus Palaeocrater. The presence of identical tyria pollen in both the flowers and on the outer surfaces of the bumblebees serves as direct evidence of their interactions, identifying Bombos as a pollinator of Tyria. At least due to the late decline, we remain anchored in the present.

Tilia Magna Separa. Image credit: Christian Geier.

“We analyzed countless fossil flowers and insect pollens in hopes of understanding the evolution of flowers, their visitors, and the pollination process,” stated Dr. Friðgeir Grímsson, a researcher at the University of Vienna.

“These microscopic pollen grains were made visible using UV and blue light, and then extracted individually from flower or insect hair, or aggregated from insects, with the aid of extremely thin needles and minimal invasive techniques.”

The pollen grains underwent careful washing and were analyzed using high-resolution light and electron microscopes.

Many of the flowers studied originated from Linden trees, with numerous bumblebees visiting Linden flowers prior to their fossilization in an ancient volcanic crater lake.

“The newly identified linden flower has been named Tilia Magna Separa,” said Christian Geier, a doctoral student at the University of Vienna.

“Additionally, two new bumblebee species have been identified: Bombos (Chrono Bombos) Mesegas and Bombos (Time Bombos) Pereoctor.”

The fossils were uncovered during the excavation of lake sediments from the former volcanic lake near Enspel in Rhineland-Palatinate, Germany.

Tilia Magna Separa marks the first recorded flowers from the European continent, characterized and described as per pollenological standards—the science of pollen,” the researchers noted.

“The fossil bumblebees rank among the oldest representatives of their genus, with only one species from Colorado, USA, predating them.”

“This is the first instance globally where a fossil flower and its pollinator bee have been described arising from the same deposits, with pollen linking them directly,” Geier remarked.

“Such research holds significant potential to enhance our understanding of past pollinator dynamics.”

The Fossil Record offers insights into the evolutionary developments of the past, revealing changes due to climate shifts, species extinction, and evolutionary adaptation.

By analyzing fossilized animal and plant groups, we can infer their behaviors and reactions to environmental changes.

“Our research allowed us to identify specific flower homeostasis among the bumblebees studied,” Geier explained.

“This indicates that they tend to visit only one type of plant during a single flight.”

“These findings are crucial for gaining a deeper understanding of the delicate interactions and resilience within today’s ecosystems.”

The study was published today in the journal New Botanist.

____

Christian Gayer et al. 24 million years of pollination interaction between European linden flowers and bumble bees. New Botanist, published online on September 22, 2025. doi: 10.1111/nph.7053

Source: www.sci.news