“Unconscious Brain Activity and Epileptic Seizures: The Role of Sleep Brain Waves”

A new study has found that the slow brain waves typical of sleep occur in epilepsy patients when they are awake, helping to prevent the brain from becoming more excited. These waves reduce epileptic activity while negatively impacting memory, suggesting a potential new therapeutic approach for epilepsy.

UCL researchers have found that slow brain waves commonly seen during sleep occur in epilepsy patients while they are awake, preventing seizures but affecting memory, suggesting a new potential treatment for epilepsy. are doing.
A new study led by researchers at University College London (UCL) has found that slow waves, which normally occur only in the brain during sleep, also occur when epilepsy patients are awake, and show that slow waves, which are associated with epilepsy symptoms, can also occur in the brain during sleep. It was found that there is a possibility of preventing increased excitement.

Methodology and findings

The study was published today (November 30) in the journal nature communications The National Institute for Health Research (NIHR) UCLH Biomedical Research Center also took part in conducting electroencephalogram (EEG) scans from electrodes in the brains of 25 patients with focal epilepsy (a type of epilepsy characterized by seizures originating from specific parts of the brain). was inspected. brain), they performed an associative memory task.
Electrodes were placed in the patient’s brain to localize abnormal activity and inform surgical treatment.
During the task, participants were presented with 27 pairs of images that remained on the screen for 6 seconds. The images are divided into nine groups of three, and each group contains photos of people, places, and objects. In each case, participants had to remember which images were grouped together. EEG data were recorded continuously throughout the task.
After reviewing EEG data, the researchers found that the brains of people with epilepsy produce slow waves lasting less than a second while they are awake and participating in tasks.
The occurrence of these “awakening” slow waves increased in response to increased brain excitability, reducing the influence of epileptic spikes on brain activity.
In particular, it reduces the “firing” of nerve cells, which the researchers say can prevent epileptic activity.

Implications and future research

Lead author Professor Matthew Walker (UCL Queen Square Institute of Neurology) said: “Sleep is crucial for repairing, maintaining, and resetting brain activity. When we are awake, our brains gradually become more excitable, which recovers during sleep.
“Recent research has shown that a specific form of brain activity, namely slow waves during sleep, plays an important role in these restorative functions. We believe that these ‘sleep’ slow waves , we wanted to consider whether this could occur during wakefulness in response to the abnormal increase in brain activity associated with epilepsy.
“This study reveals for the first time ‘arousal’ slow waves, a potential protective mechanism used by the brain to counter epileptic activity. This mechanism takes advantage of brain defense activity that normally occurs during sleep, but can also occur during wakefulness in epileptic patients. ”
As part of the study, the team also wanted to test whether the occurrence of “awake” slow waves had a negative impact on cognitive function.
Researchers found that during memory tasks, “awake” slow waves reduced neuronal activity, thus affecting cognitive performance and increasing the time patients needed to complete the task.
The researchers reported that for every additional slow wave per second, reaction time increased by 0.56 seconds.
Professor Walker said: “This observation suggests that the cognitive impairments experienced by epilepsy patients, particularly memory impairments, may be due in part to short-term impairments caused by these slow waves. “
The research team hopes that future studies will increase such activity as a potential new treatment for epilepsy patients.
Lead author Dr Laurent Sheibany (UCL Queen Square Institute of Neurology) said:
“Our study suggests that naturally occurring activity is utilized by the brain to offset pathological activity. However, slow waves of ‘wake’ may have no effect on memory performance. This comes at a cost because we know we give.
“From a purely neurobiological perspective, this study also supports the idea that sleep activity does not occur uniformly throughout the brain, but may occur in specific regions of the brain.”
Reference: “Awakening slow waves in focal human epilepsy affect network activity and cognition” November 29, 2023 nature communications.
DOI: 10.1038/s41467-023-42971-3
This research was funded by the Medical Research Council, Wellcome, UCLH Biomedical Research Center and the Swiss National Science Foundation.

Source: scitechdaily.com

The Surprising Role of NASA in Tackling the Climate Crisis

Flaring, the deliberate burning of excess natural gas into the atmosphere, is one way methane is released from oil and gas facilities. His EMIT mission for NASA, over more than a year of operation, demonstrated its proficiency in discovering methane and other greenhouse gas emissions from space.

Since its launch 16 months ago, the EMIT imaging spectrometer has international space station demonstrated the ability to detect more than just surface minerals. More than a year after first detecting a methane plume from its perch on the International Space Station (ISS), data from NASA’s EMIT instrument is now being used to analyze greenhouse gas emissions with a level of proficiency that surprised even its designers. used to identify source emissions.

EMIT‘s mission and capabilities

EMIT, which stands for Earth Surface Mineral Dust Source Investigation, was launched in July 2022 to map 10 major minerals on the surface of the world’s arid regions. Mineral-related observations are already available. researcher and the general public to better understand how dust in the atmosphere affects the climate.

Methane detection was not part of EMIT‘s primary mission, but the instrument’s designers expected the imaging spectrometer to have that capability. More than 750 sources of emissions have been identified since August 2022, some of which are small, located in remote areas, and persistent over long periods of time, according to a new study published in the journal However, this device is said to have achieved more than sufficient results in that respect. scientific progress.

EMIT identified a cluster of 12 methane plumes within a 150 square mile (400 square kilometer) area in southern Uzbekistan on September 1, 2022. The instrument captured this cluster, which the researchers call a “scene,” in a single shot.

Credit: NASA/JPL-California Institute of Technology

Methane emissions and climate change

“We were a little cautious at first about what this device could do,” said Andrew Thorpe, a research engineer on the EMIT science team. NASAis a researcher at the Jet Propulsion Laboratory in Southern California and the paper’s lead author. “It exceeded our expectations.”

Knowing where methane emissions are coming from gives operators of landfills, agricultural sites, oil and gas facilities, and other methane-producing facilities the opportunity to address methane emissions. Tracking human methane emissions is key to limiting climate change because it provides a relatively low-cost and rapid approach to reducing greenhouse gases. Methane remains in the atmosphere for about 10 years, during which time it traps heat up to 80 times more strongly than carbon dioxide, which remains for centuries.

When strong winds kick up mineral rock dust(such as calcite or chlorite) on one continent, the airborne particles can travel thousands of miles and impact an entirely different continent. Airborne dust can heat or cool the atmosphere and the ground. This heating or cooling effect is the focus of NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) mission.

Credit: NASA/JPL-California Institute of Technology

amazing results

EMIT has proven effective in detecting both large-scale sources (tens of thousands of pounds of methane per hour) and surprisingly small sources (hundreds of pounds of methane per hour). It has been. This is important because it will allow us to identify more “superemitters,” or sources that produce a disproportionate share of total emissions.

A new study documents how EMIT was able to observe 60% to 85% of the methane plumes typically seen during airborne operations, based on the first 30 days of greenhouse gas detections.

On September 3, 2022, EMIT detected a methane plume emitting approximately 979 pounds (444 kilograms) per hour in a remote corner of southeastern Libya. This is one of the smallest sources ever detected by this instrument.

Credit: NASA/JPL-California Institute of Technology

Comparison with airborne detection

From thousands of feet above the ground, an aircraft’s methane detection equipment is more sensitive, but researchers need advance notice that they will detect methane before the aircraft can be dispatched. Many areas are not explored because they are considered too remote, too dangerous, or too expensive. Furthermore, actual campaigns cover a relatively limited area over a short period of time.

EMIT, on the other hand, will collect data from a space station at an altitude of about 400 kilometers, covering a wide area of ​​the Earth, especially the arid region between 51.6 degrees north and 51.6 degrees south latitude. The imaging spectrometer produces a 50-mile-by-50-mile (80-kilometer-by-80-kilometer) image of the Earth’s surface (researchers call it a “scene”), including many areas that could not be reached with airborne instruments. capture.

“The number and size of methane plumes that EMIT has measured around our planet is astonishing,” said Robert O. Green. JPL Senior Researcher and Principal Investigator at EMIT.

NASA EMIT

We created this time-lapse video showing the International Space Station’s Canadarm2 robotic arm moving NASA’s EMIT mission outside the station. The Dragon spacecraft was launched…

Posted by NASA EMIT on Wednesday, October 26, 2022

Detection by scene

To help identify sources, the EMIT science team created maps of methane plumes and identified them as Websitethe underlying data are available at the NASA and U.S. Geological Survey Joint Land Processes Distributed Active Archive Center (LPDAAC). Data from this mission will be available to the public, scientists, and organizations.

EMIT began collecting observations in August 2022 and has since recorded more than 50,000 scenes. The instrument discovered clusters of emission sources in little-studied areas. Southern Uzbekistan On September 1, 2022, we detected 12 methane plumes totaling approximately 49,734 pounds (22,559 kilograms) per hour.

Additionally, the instrument detected a much smaller plume than expected.captured in a secluded corner Southeastern Libya On September 3, 2022, one of the smallest sources to date was emitting 979 pounds (444 kilograms) per hour, based on local wind speed estimates.

Reference: “Attribution of Individual Methane and Carbon Dioxide Sources Using EMIT Observations from Space” Andrew K. Thorpe, Robert O. Green, David R. Thompson, Philip G. Brodrick, John W. Chapman, Clayton D. Elder, Itziar, Iraklis-Leuchert, Daniel H. Cusworth, Alana K. Ayasse, Riley M. Duren, Christian Frankenberg, Louis Gunter, John R. Warden, Philip.・E. Dennison, Dar A. Roberts, K. Dana Chadwick, Michael L. Eastwood, Jay E. Farren and Charles E. Miller, November 17, 2023, scientific progress.

DOI: 10.1126/sciadv.adh2391

EMIT mission details

EMIT was selected from the Earth Venture Instrument-4 public offering by NASA’s Science Mission Directorate’s Earth Sciences Division and was developed at NASA’s Jet Propulsion Laboratory, managed for NASA by the California Institute of Technology in Pasadena, California. Data from this instrument is publicly available for use by other researchers and the public at the NASA Land Processes Distributed Active Archive Center.

Source: scitechdaily.com