Stellar-Mass Black Hole Triggers Record-Breaking Cosmic Burst by Collapsing Companion Star

Astronomers have utilized data gathered from a network of space and terrestrial telescopes to identify AT 2024wpp, the most radiant blue light transient (LFBOT) ever recorded. These uncommon, ephemeral, and exceedingly luminous outbursts have perplexed scientists for a decade, but the extraordinary brightness and comprehensive multiwavelength data from AT 2024wpp indicate that they cannot be attributed to typical stellar explosions such as supernovae. Instead, recent observations reveal that AT 2024wpp was generated by an extreme tidal disruption event, where a black hole, with a mass approximately 100 times that of the Sun, dismantles a massive companion star over the course of just a few days, converting a significant portion of the star’s mass into energy.



This composite image contains X-ray and optical data for the LFBOT event at 2024wpp. Image credits: NASA / CXC / University of California, Berkeley / Nayana others. / Legacy Survey / DECaLS / BASS / MzLS / SAO / P. Edmonds / N. Walk.

LFBOTs derive their name from their intense brightness, being visible from hundreds of millions to billions of light years away, and their ephemeral nature, lasting merely a few days.

They emit high-energy light across the blue spectrum into ultraviolet and X-rays.

The inaugural observation was made in 2014, but the first LFBOT with sufficient data for analysis was recorded in 2018, termed AT 2018cow, in accordance with standard naming conventions.

Researchers nicknamed it “cow”, alongside other LFBOTs dubbed “tongue-twisted koala” (ZTF18abvkwla), “Tasmanian devil” (AT 2022tsd), and “finch” (AT 2023fhn). AT 2024wpp is likely to be known as Wasp.

Researchers determined that AT 2024wpp was not a supernova after assessing the energy output of the phenomenon.

The energy was found to be 100 times greater than that produced by typical supernovae.

The emitted energy must convert roughly 10% of the Sun’s rest mass into energy over a brief period of weeks.

Specifically, observations from Gemini South disclosed excess near-infrared radiation emitted by a luminous source.

This marks the second instance astronomers have witnessed such an occurrence, with the first being AT 2018cow, which seemingly doesn’t occur in regular stellar explosions.

These observations establish near-infrared excess as a defining characteristic of FBOT, yet no model can adequately explain it.

“The energy released by these bursts is so immense that it cannot be accounted for by a nuclear collapse or any typical stellar explosion,” stated Nathalie LeBaron, a graduate student at the University of California, Berkeley.

“The main takeaway from AT 2024wpp is that the model we initially proposed is incorrect. This is definitely not an ordinary exploding star.”

Scientists suggest that the intense high-energy light emitted during this extreme tidal disruption stems from the black hole binary system’s prolonged parasitic behavior.

As they piece together this history, it appears the black hole has been gradually siphoning material from its companion star, enveloping itself in a ring of material too distant to be consumed.

Subsequently, when the companion star ventured too near and was shredded, the new material became ensnared in a rotating accretion disk, colliding with pre-existing material and releasing X-rays, ultraviolet light, and blue radiation.

Much of the gas from the companion star ended up spiraling toward the black hole’s poles, where it was expelled as material jets.

Authors calculated that the jet was traveling at about 40% the speed of light and emitted radio waves upon interacting with surrounding gas.

Similar to most LFBOTs, AT 2024wpp is situated in a galaxy characterized by active star formation, making the presence of large stars likely.

Located 1.1 billion light years away, AT 2024wpp is 5 to 10 times more brilliant than AT 2018cow.

The companion star that was torn apart was estimated to be over 10 times the mass of the Sun.

“It may have been what is referred to as a Wolf-Rayet star, a very hot evolved star that has depleted much of its hydrogen,” remarked the astronomers.

“This would account for the weak hydrogen emission observed from AT 2024wpp.”

The findings are published in two papers: Astrophysics Journal Letter.

_____

Natalie LeBaron others. 2025. Brightest known fast blue light transient AT 2024wpp: unprecedented evolution and properties from ultraviolet to near-infrared. APJL in press. arXiv: 2509.00951

AJ Nayana others. 2025. Brightest known fast blue light transient AT 2024wpp: unprecedented evolution and properties in X-rays and radio. APJL in press. arXiv: 2509.00952

Source: www.sci.news

Unexpectedly large stellar-mass black hole spotted in close binary star system

Using data from ESA’s Gaia mission, astronomers discovered a nearby binary system of massive stars orbiting a dormant star-derived black hole over a period of 11.6 years. The black hole’s estimated mass (33 solar masses) is significantly larger than all known stellar-mass black holes in the Milky Way and within the mass range of extragalactic black holes detected by gravitational waves.

Locations of the first three black holes discovered in the Milky Way by ESA’s Gaia mission. Image credit: ESA/Gaia/DPAC.

The binary star system in question is named Gaia BH3 and is located 1,926 light-years from Earth in the constellation Aquila.

Also known as Gaia DR3 4318465066420528000, LS II +14 13, and 2MASS J19391872+1455542, it consists of an old, very metal-poor giant star and a dormant stellar-mass black hole.

Gaia BH3 is the third dormant black hole discovered by ESA’s interstellar mapping satellite Gaia.

“This is the kind of discovery that only happens once in a research career,” said Dr. Pasquale Panuzzo, an astronomer at the CNRS and the Paris Observatory.

“So far, black holes this large have only been detected in distant galaxies by the LIGO-Virgo-KAGRA collaboration, thanks to observations of gravitational waves.”

The average mass of the known stellar-origin black holes in our galaxy is about 10 times the mass of the Sun.

Astronomers face the pressing problem of explaining the origin of black holes as large as Gaia BH3.

Our current understanding of how massive stars evolve and die does not immediately explain how this type of black hole could be born.

Most theories predict that as massive stars age, a significant portion of their material is shed by powerful winds. Eventually, it will be partially blown into space when it explodes as a supernova.

The remainder of the core shrinks further, becoming either a neutron star or a black hole, depending on its mass.

It is extremely difficult to explain a core large enough to eventually become a black hole 30 times the mass of the Sun. But the clues to solving this mystery may lie very close to Gaia BH3.

The star, which orbits Gaia BH3 at about 16 times the distance between the Sun and Earth, is quite unusual and is an ancient giant that formed during the first two billion years after the Big Bang, when our galaxy began to form. It’s a star.

It belongs to the family of galactic stellar halos, which move in the opposite direction to the stars in the galactic disk.

Its orbit indicates that the star was probably part of a small galaxy, or globular cluster, that was swallowed up by the Milky Way more than 8 billion years ago.

This companion star contains almost no elements heavier than hydrogen or helium, indicating that the massive star that became Gaia BH3 may also have been extremely poor in heavy elements.

For the first time, the theory that the massive black holes observed in gravitational wave experiments were created by the collapse of primordial massive stars lacking heavy elements has been confirmed.

These early stars may have evolved differently from the massive stars we see in our galaxy today.

The composition of the companion star can also reveal the formation mechanism of this surprising binary system.

“We were surprised that the chemical composition of the companion star is similar to that seen in older, metal-poor stars in the Milky Way,” said Dr. Elisabetta Cuffo, an astronomer at the CNRS and the Paris Observatory.

“There is no evidence that this star was contaminated by material ejected from the supernova explosion of the massive star that became BH3.”

“This may suggest that the black hole acquired a mate from another star system for the first time after its birth.”

of the team paper be published in a magazine astronomy and astrophysics.

_____

P. Panuzzo other. (Gaia collaboration). 2024. Gaia astronomical measurements prior to release discovered a dormant black hole with the mass of 33 solar masses. A&A, in press. doi: 10.1051/0004-6361/202449763

Source: www.sci.news