Observations Indicate OJ 287 Galaxy May Host an Ultra-Massive Black Hole Binary at Its Core

Utilizes data from 10m space-based wireless telescopes, including Radioastron. Astronomers have formed a network of 27 ground observation stations focused on OJ 287, a galaxy approximately 5 billion light-years distant from the Cancer constellations.



This image of OJ 287 reveals the sharply curved ribbon-like structure of the plasma jet emitted from its center. Image credits: Efthalia Traianou / Heidelberg University / IWR.

“Among the different types of active galactic nuclei, BL Lacertae (BL LAC) objects are notable for their rapid, large-amplitude variability and significant polarization across multiple wavelengths due to relativistic jets aligned closely with our line of sight.”

“A standout example of this subclass is OJ 287, characterized by a redshift of z = 0.306.”

Optical observations of OJ 287 have yielded an extensive light curve extending back to the 1880s, covering nearly 150 years.

This comprehensive dataset has uncovered periodic brightness variations, featuring marked 60-year cycles and notable high-brightness flares with recurrent double peaks occurring approximately every 12 years.

These periodic changes can be attributed to the presence of a binary supermassive black hole system, where secondary supermassive black holes follow eccentric precession paths around the more massive primary.

“The level of detail in the new images allows us to see the structure of the OJ 287 Galaxy like never before,” stated Dr. Traianou.

“The images penetrate deep into the galaxy’s center, revealing the jet’s sharply curved ribbon-like structure.”

“This also provides new insights into the composition and dynamics of plasma jets.”

“Certain regions exceed temperatures of 10 trillion Kelvin, indicating the release of extreme energy and movement near the black hole.”

Astronomers have also monitored the development, dispersion, and interactions of new shock waves along the jet, linking them to energies in the range of trillions of electron volts from rare gamma-ray observations made in 2017.

Using Radioastron and 27 terrestrial observatories, they captured images of OJ 287 across the radio spectrum.

The imaging relies on measurement techniques that utilize overlapping waves related to the properties of light waves.

“Interference measurement images bolster the hypothesis that a binary supermassive black hole resides within OJ 287,” the researchers commented.

“This also offers critical insights on how these black holes influence the shape and direction of the emitted plasma jet.”

“These unique characteristics position the galaxy as an ideal candidate for further studies on black hole mergers and associated gravitational waves.”

Survey results will be published in the journal Astronomy and Astrophysics.

____

E. Traianou et al. 2025. Reveal ribbon-like jets on OJ 287 via Radioastron. A&A 700, A16; doi: 10.1051/0004-6361/202554929

Source: www.sci.news

Bright Seifert Galaxy’s Ultra-Massive Black Hole Exhibits Signs of “Overeating”

In a new research paper published in Monthly Notices of the Royal Astronomical Society, astronomers from the University of Leicester explain for the first time how the “excessive diet” of fresh material in black holes has led to emissions reaching nearly a third of the speed of light.



This image illustrates Seyfert Galaxy PG1211+143. Image credits: Centre Donna Astromyk destrasbourg/Sinbad/SDSS.

The intense outflow of ionized gases has raised significant concerns at the ESA’s XMM-Newton X-ray observatory since its initial detection by University of Leicester astronomers in 2001, now recognized as a distinctive trait of the luminous active galactic nuclei (AGNs).

Professor Ken Pound and Dr. Kim Page from Leicester remarked:

“The black hole’s size increases with its mass, with a solar mass black hole having a radius of about 3 km.”

“Stellar mass black holes are prevalent across galaxies, often forming from the dramatic collapse of massive stars; however, ultra-massive black holes can be found in the nuclei of almost all galaxies except the smallest external ones.”

In 2014, astronomers undertook a five-week investigation of an ultra-massive black hole in the distant Seyfert Galaxy PG1211+143, located approximately 1.2 billion light-years from the constellation Coma Berenices.

Utilizing ESA’s XMM-Newton Observatory, they observed counter-inflows, accumulating at least 10 Earth masses near the black hole.

In their latest study, they detected a powerful new outflow traveling at 0.27 times the speed of light, initiated shortly thereafter. The gravitational energy released as material is drawn into the black hole is heated to millions of degrees, producing an overwhelming radiant pressure.

“Establishing a direct causal relationship between significant, temporary inflows and the resulting outflows offers an exciting perspective for observing the growth of supermassive black holes through continuous monitoring of the hot relativistic winds linked with new material accretion,” stated Professor Pound.

“PG1211+143 has been the focus of University of Leicester X-ray astronomers using ESA’s XMM-Newton Observatory since its launch in December 1999.”

“Initial findings surprisingly revealed a counterflow of rapid movements, reaching 15% of the speed of light (0.15c), affecting stellar formation (and consequently the growth) of the host galaxy.”

“Subsequent observations have shown that such winds are a common characteristic of bright AGNs.”

____

Ken Pounds & Kim Page. 2025. Observations of the Eddington-style outflow from the bright Seyfert Galaxy PG1211+143. mnras 540(3): 2530-2534; doi: 10.1093/mnras/staf637

Source: www.sci.news