AI Assists in Discovering Paint Formulas for Keeping Your Building Cool

Researchers contend that with the rapid development of machine learning, new materials can be engineered for various applications, from electric motors to carbon capture technologies. AI-generated paints could help mitigate the effects of urban heat islands and lower air conditioning costs.

Experts in materials science are harnessing artificial intelligence to create innovative coatings that can maintain building temperatures 5°C to 20°C cooler than conventional paint after exposure to direct sunlight. This technology is also applicable to vehicles, trains, electrical devices, and other entities that need enhanced cooling in a warming world.

Through machine learning, interdisciplinary teams from institutions in the US, China, Singapore, and Sweden have developed a new paint formulation optimized for reflecting sunlight and radiating heat, as evidenced by peer-reviewed research. Published in Science Journal Nature.

This represents the latest instance of AI circumventing traditional trial-and-error methods in the pursuit of scientific innovation. Last year, UK-based Matnex employed AI to design a new type of permanent magnet for electric vehicle motors, aiming to reduce reliance on carbon-heavy rare earth elements.

Microsoft has also released AI tools tailored for researchers to swiftly create novel inorganic materials—such as crystal structures commonly utilized in solar panels and medical implants. There’s optimism surrounding the potential for new materials to enhance carbon capture capabilities and improve battery efficiency.

Investigations into paint were conducted by scholars at the University of Texas at Austin, Shanghai Jiao Tong University, National University of Singapore, and Umeå University in Sweden. In scorching locations like Rio de Janeiro and Bangkok, researchers determined that applying one of the newly developed AI-enhanced paints to the roof of a four-story apartment building could conserve 15,800 kilowatt-hours of electricity annually. When this paint is used on 1,000 buildings, it saves enough energy to power over 10,000 air conditioning units each year.

“As a scientist at the University of Texas and a co-leader of this research,” said Yuebbing Zeng, “our machine learning framework signifies a significant advancement in thermal meta-emitter design. By automating processes and broadening the design landscape, we can generate materials with exceptional properties that were previously unfeasible.”

He mentioned that what previously took a month can now be achieved in days using AI to innovate new materials, including those that might not have been uncovered through traditional exploration methods.

“Now we follow the machine learning outputs; its directives can be executed without numerous design and manufacturing test cycles,” he added.

Dr. Alex Ganoce, a lecturer at Imperial College London, emphasized: “We are also leveraging machine learning to innovate new materials. Developments in this field are occurring rapidly. Over the last year, numerous startups have emerged aiming to utilize generative AI for materials creation.”

He noted that the journey to design new materials can involve assessing millions of potential combinations. AI empowers material scientists to overcome limitations associated with computing resources and allows them to specify desired characteristics to the AI upfront, thereby reversing the conventional method of material creation and trait testing.

Source: www.theguardian.com

Origami assists single-celled predator in elongating its ‘neck’

Two micropipettes hold the organism and extend its “neck”

Elliot Flaum and Manu Prakash/Stanford University

Imagine if your neck could stretch long enough to reach your local store while sitting on the couch. That would be a human representation of what a single-celled predator can do. And now, a long-standing mystery has been solved: how that animal can stretch its “neck” to more than 30 times the length of its “body.”

The organism’s cell membrane is folded into a series of folds that can only unfold and fold in one direction. Elliot Flaum Stanford University and her colleagues Manu Prakash They found ways to stretch and fold the paper without it getting tangled. “Most of this came from just playing with paper,” Prakash says.

Lacrimaria Aurore It is a single-celled organism, or protist, that lives in freshwater and hunts prey with a highly extensible neck-like protrusion. Its name means “swan’s tears” after its swan-like neck and teardrop-shaped body.

The cell membrane is very flexible, but it is not elastic and does not stretch. L. Aurore Why their necks stretch so far has remained a mystery since they were first observed under a microscope in the 16th century. “Compared to a lot of other organisms, the neck stretches by an order of magnitude,” Prakash says. “That’s the mystery.”

He and Flaum L. Aurore To solve this mystery, samples taken from the swamp six or seven years ago were studied. Flaum used a variety of techniques to L. Aurore And inside that cytoskeleton is made up of structures called microtubules. “We looked at it in a variety of different ways to try to understand what was going on,” she says.

This means: L. Aurore It is folded into 15 pleats, with each pleat spiralling around the cell to form a helical structure, a folding pattern Prakash calls “curved crease origami,” or “lacrigami.”

but, L. Aurore How can such a vast region of the cell membrane unfold and fold without getting tangled? What Prakash and Flaum discovered is that because the pleats are stabilized by bands of microtubules connected to them, the entire fold cannot unfold at once. Instead, only a single point of the fold can unfold or fold at any one time.

As these points move in parallel along each of the 15 wrinkles, the cell membrane unfolds in an orderly fashion, lengthening the neck. Reversing this process shortens the neck.

“Instead of folding randomly like you would when crumpling a sheet of paper, it has guide rails that help you fold it the same way every time,” Flaum says.

The folding and unfolding of cells is driven by the beating of cilia that cover the entire surface of the cell, Prakash said. Unlike springs, cilia require energy to refold and unfold, whereas cell membranes bend easily and require very little energy.

As far as he knows, no one has discovered this origami technique before. “When I discovered this, I always assumed that someone playing with paper would have discovered this origami,” Prakash says. “It’s so easy.” He says anyone with paper and tape can make it.

“The neck’s ingenious origami-like design makes the cilia effective for high-speed, long-distance hunting,” they write. Leonardo Gordillo and Enrique Cerda At the University of Santiago in Chile Accompanying Articles“The origami-like protrusion mechanism identified by Flaum and Prakash has the potential to inspire new strategies in soft-matter engineering.”

In fact, Prakash and Flaum are currently working on developing a medical robot based on Rakurigami. “If you had a tiny microrobot in a very tight space, and it could suddenly stretch, that would be very useful for microsurgery,” he says. “But we did this research because it’s just beautiful and a mystery to solve. We didn’t expect it to be useful in any way.”

topic:

Source: www.newscientist.com