Quantum Experiment Resolves Century-Long Debate Between Einstein and Bohr

SEI 276622262

Double-slit experiment showcases the quantum nature of reality

Russell Kightley/Science Photo Library

A thought experiment that sparked a famous debate between physicists Albert Einstein and Niels Bohr in 1927 has now been realized. This breakthrough addresses one of quantum physics’ fundamental mysteries: is light truly a wave, a particle, or an intricate mix of both?

The debate centers on the double-slit experiment, tracing back another century to 1801, when Thomas Young used it to argue for the wave nature of light, while Einstein contended it is a particle. Bohr’s contributions to quantum physics suggested that both perspectives could hold true. Einstein, critical of this notion, designed a modified version of Young’s experiment to counter it.

<p>Recently, <a href="https://quantum.ustc.edu.cn/web/en/node/137">Chaoyan Lu</a> and his team at the University of Science and Technology of China utilized cutting-edge technology in experimental physics to verify Einstein's theories, demonstrating the unique dual wave-particle character of quantum objects, as theorized in the 1920s. "Witnessing quantum mechanics 'in action' at such a foundational level is awe-inspiring," remarks Lu.</p>
<p>In the classic double-slit experiment, light is directed at two narrow parallel slits in front of a screen. If light were entirely particles, the screen would display a distinct light blob behind each slit. However, researchers observed an "interference pattern" of alternating dark and bright bands instead. This demonstrates that light behaves like waves passing through a slit, creating ripples that collide on the screen. Notably, this interference pattern remains evident even when the light intensity is reduced to a single photon. Does this imply that photons, which exhibit particle-like behavior, also interfere like waves?</p>
<p>Bohr proposed the idea of "complementarity," stating that one cannot simultaneously observe the particle nature of a photon showing wave-like behavior, and vice versa. Amid discussions on this matter, Einstein envisioned an additional spring-loaded slit that would compress when a photon entered. By analyzing the movement of the spring, physicists could determine which slit a photon passed through. Einstein believed this approach allowed for a simultaneous description of both particle and wave behavior, creating an interference pattern that contradicts complementarity.</p>
<section></section>
<p>Lu's team aimed to create a setup at the "ultimate quantum limit," firing a single photon rather than using a slit, but rather an atom that could recoil similarly. Upon impacting the atom, the photon entered a quantum state that allowed it to propagate left and right, which also produced an interference pattern upon reaching the detector. To achieve this, researchers utilized lasers and electromagnetic forces to significantly cool the atoms, enabling precise control over their quantum properties. This was vital for testing Bohr's claims against Einstein's. Bohr argued that Heisenberg's uncertainty principle could disrupt the interference pattern when momentum fluctuations of the slit due to recoil are well known, rendering the photon’s position highly ambiguous, and vice versa.</p>
<p>"Bohr's response was brilliant, but such thought experiments remained theoretical for almost a century," notes Lu.</p>

<p>By adjusting the laser, Lu's team could control the momentum uncertainty of the atoms as they slitted. They found that Bohr was indeed correct; finely tuning these momentum ambiguities could eliminate interference patterns. Remarkably, the team could access intermediate regions to measure recoil information, observing blurred versions of interference patterns. Essentially, the photon displayed both wave and particle characteristics simultaneously, according to Lu.</p>
<p>``The real intrigue lies in [this] intermediate realm," states <a href="https://physics.mit.edu/faculty/wolfgang-ketterle/">Wolfgang Ketterle</a> from the Massachusetts Institute of Technology. Early this year, he and his team conducted a variation of Einstein's experiment, using ultracold atoms controlled by lasers that could pass through two slits. Lu's group utilized a single atom to scatter light in two directions; both atoms scattered light in the same direction, and changes in its quantum state indicated the influence of the photons colliding with each atom. Ketterle emphasizes that this approach provides a distinct means to explore wave-particle duality, offering clearer insights into photon behavior since this "which direction" information is recorded in one of the two separate atoms, albeit deviating slightly from Einstein's premise.</p>
<p>Furthermore, he and his colleagues performed experiments where they abruptly switched off the laser (similar to removing a spring from a moving slit) and subsequently directed photons at the atoms. Bohr's conclusions held, as the uncertainty principle impacted the momentum exchange between atoms and photons, potentially "washing out" the interference fringes. This spring-free iteration of Einstein's concept had remained untested until now, according to Ketterle. "Nuclear physics presents an excellent opportunity to apply cold atoms and lasers for a clearer illustration of quantum mechanics, a possibility not achievable before."</p>

<p><a href="https://physik.unibas.ch/en/persons/philipp-treutlein/">Philip Treutlein</a> and his colleagues at the University of Basel in Switzerland assert that both experiments strongly reinforce fundamental aspects of quantum mechanics. "From our modern perspective, we understand how quantum mechanics operates on a microscopic level. Yet witnessing the empirical realization of these principles is always impactful." The experiments led by Lu align conceptually with historical records of the debates between Bohr and Einstein, affirming that quantum mechanics behaves as predicted.</p>
<p>For Lu, there remains more work on categorizing the quantum state of the slit and increasing its mass. However, the experiment carries significant educational importance. "Above all, I hope to illustrate the sheer beauty of quantum mechanics," he shares. "If more young individuals witness the real-time emergence and disappearance of interference patterns and think, 'Wow, this is how nature functions,' then the experiment will already be a success."</p>

<section class="ArticleTopics" data-component-name="article-topics">
    <p class="ArticleTopics__Heading">topic:</p>
</section>

Source: www.newscientist.com

Webb discovers the highly elusive “Einstein Ring”

Light from the very distant spiral galaxy was bent and expanded by the gravity of the members of the Galaxy Cluster SMACSJ0028.2-7537 to form a ring-like structure known as the Einstein ring.



This composite image combines data from Webb’s near-infrared camera (Nircam), Hubble’s Widefield Camera 3 (WFC3), and advanced cameras for survey (ACS) equipment, showing Einstein’s rings around the elliptical galaxy of the Galaxy Cluster. Image credits: NASA/ESA/CSA/Webb/G. Mahler.

Einstein RingAlso known as Einstein-Chwolson Rings or Chwolson Rings, occurs when light from very distant objects bend around a large intermediate object.

“This is possible because space-time, the fabric of the universe itself, is bent by mass, so light passing through space and time is also bent,” said Guillaume Mahler, an astronomer at the University of Ligiju and a colleague.

“This effect is too subtle to observe at a local level, but dealing with the curvature of light on a huge astronomical scale can make it clearly observable.”

“When light from one galaxy is bent around another galaxy or cluster of galaxies.”

“If the lensed and lens objects are perfectly aligned, the result is a unique Einstein ring.”

“This will appear as a complete circle or a partial circle of light around the lens object, depending on the accuracy of the alignment.”

“Objects like this are the ideal laboratory for studying how galaxies are so faintly far away.”

New images were captured by Webb’s Nircam (near infrared) instrument As part of Powerful lens and cluster evolution (slice) investigation.

“The lens galaxy at the heart of this Einstein ring is an oval galaxy that can be seen by the galaxy’s bright core, smooth, uncharacteristic body,” the astronomer said.

“This galaxy belongs to a galaxy cluster named smacsj0028.2-7537.”

“Galaxies with lenses wrapped in elliptical galaxies are spiral galaxies.”

“The image is distorted as the light travels around the galaxy in its path, but the individual star clusters and gas structures are clearly visible.”

Source: www.sci.news

A complete Einstein ring found surrounding NGC 6505 by astronomers

Einstein rings (also known as Einstein – Chuworson rings or Chuworson rings) pass through very large masses such as galaxy clusters and giant galaxies as light from distant objects, such as galaxies.

Close-up of Einstein rings around NGC 6505. Image credits: ESA/Euclid/Euclid Consortium/NASA/J.-C. Cuillandre / G. Anselmi / T. Li.

This is the first powerful gravitational lens discovered in Euclidean, and the first powerful lens in the NGC object of investigation.

In the Galaxy-Galaxy's strong gravitational lens, light from the distant source galaxy is distorted and enlarged by the gravitational field of the foreground lens galaxy, forming multiple images of the source galaxy.

When the source is resolved, that is, not like a point, but close to the projection center of the lens of the source plane, a so-called Einstein ring is formed.

Both Einstein rings and lensed sources have enormous scientific value and are used in a variety of applications.

“The Einstein ring is an example of a strong gravity lens,” says Dr. Conor O'Riordan, an astronomer at the Max Planck Institute for Astrophysics.

“All powerful lenses are special because they are very rare and very scientifically useful.”

“This is especially special because it's very close to the Earth and makes the alignment very beautiful.”

The ring of light surrounding the NGC 6505, captured by ESA's Euclidean telescope, is a stunning example of the Einstein ring. Image credits: ESA/Euclid/Euclid Consortium/NASA/J.-C. Cuillandre / G. Anselmi / T. Li.

Not only are you on the ESA's Euclidean spacecraft using deep imaging data from visible cameras (VIS) and near-infrared spectrometers and photometers (NISP) equipment, but also Keck Cosmic Web Imager (kcwi) At the Wm Keck Observatory, astronomers discovered Einstein rings around the center NGC 6505An oval galaxy about 590 million light years from Earth.

The ring around the foreground NGC 6505 is made up of light from even brighter galaxies.

The galaxy in the background is 4.42 billion light years away, and the light is distorted by the force of gravity on its way towards us.

“I think it's very interesting to see this ring within the famous galaxy, first discovered in 1884,” says Dr. Valeria Pettorino, scientist of the ESA Euclid project.

“The galaxy has been known to astronomers for a very long time. Still, this ring has not been observed before.”

“This shows how powerful Euclidean is and we&#39re finding new things in places we thought we knew well.”

“This discovery is extremely encouraging and demonstrates its incredible capabilities for the future of the Euclidean Mission.”

The discovery of the Einstein ring on the NGC 6505 is paper Published in the journal Astronomy and Astrophysics.

____

CM Orioludan et al. 2025. Euclid: Complete Einstein Ring for NGC 6505. A&A 694, A145; doi: 10.1051/0004-6361/202453014

Source: www.sci.news

The incredible picture captures the closest Einstein ring ever seen

The closest Einstein ring ever picked up by the European Space Agency's Euclidean Space Telescope

ESA

Astronomers have identified the closest Einstein ring ever. This is a rare phenomenon in which light from even more off-the-sea galaxies bend due to the gravity of galaxies near Earth. The ring was previously thought to be one galaxy, and was identified over 100 years ago.

Such a galaxy lens, the closest astronomer to date, was predicted by Albert Einstein in 1936 from his general theory of relativity. At the time, he thought it was impossible to observe such an effect. In fact, if he had a strong enough telescope, he would have seen it. “It was there all along, but we didn't know.” Thomas Collett At the University of Portsmouth, UK.

Colette and his team are about 600 million light years from Earth, and the oval galaxy NGC 6505, first discovered in 1884, is actually the second galaxy behind about 600 million light years from Earth. I noticed that the light was bent.

Close-up of Einstein Ring

ESA/Euclid/Euclid Consortium/NASA, J.-C. Image processing by Cuillandre, T. Li

Team Members Bruno Artieri We observed Einstein rings at the European Space Agency while verifying early test data from the Euclidean telescope. “There was this abundant and obvious Einstein ring. There aren't many in the universe that can produce rings like this,” says Colette.

“We would have expected about one of three opportunities to find something as spectacular as this throughout the research,” he says. “It's essentially a great fortune to find it in the first data. This is probably the most beautiful lens we find on a mission.”

The ring itself is very bright compared to most Einstein rings we know, Colette says. This is not only very close to us, but also due to the Euclidean imaging capabilities. “I'm like someone with poor eyesight,” says Colette. This makes it easy to see four images of distant galaxies. The faint orange lights surrounding the bright ring are the galaxy of Rensing.

Bringing the Einstein ring closer to Earth allows us to test relativity in ways that we cannot do with other distant lenses, says Colette. This is because galaxies can be measured in two ways. , often too far to measure accurately. Einstein's general theory of relativity states that these masses should be the same, so if there are differences it may suggest that the theory of gravity should be revised.

When Colette and his colleagues measured the mass of the lensed galaxy, they also found a slightly higher number than possible from the galaxy's estimated number of stars. This could be due to the dark matter aggregation together at Galaxy's Center. Frédéric Dux He says observatory in southern Europe needs to find more Einstein lenses to check.

topic:

Source: www.newscientist.com