VLT Unveils High-Resolution Spectral Image of Comet 3I/ATLAS

A global team of astronomers from Chile, Europe, the USA, Canada, and New Zealand has achieved an unprecedented level of detail in spectroscopic observations of an interstellar comet as it moves through our solar system. Utilizing spectroscopic data from two instruments on the ESO’s Very Large Telescope (VLT), researchers detected emissions of nickel atoms and cyan gas from the interstellar comet 3I/ATLAS, marking it as the third confirmed interstellar object recorded.



This image of interstellar comet 3I/ATLAS was taken with Hubble’s Wide Field Camera 3 (WFC3) on December 27, 2025. Image credit: NASA/ESA/CSA/Hubble.

The interstellar traveler, 3I/ATLAS, was first discovered on July 1, 2025, using the NASA-funded ATLAS (Asteroid Terrestrial Impact Last Alert System) telescope.

Also referred to as C/2025 N1 (ATLAS) and A11pl3Z, this celestial object approached from the constellation Sagittarius.

At its discovery, the comet was located 4.51 astronomical units (AU) from the Sun, with an eccentricity of 6.13.

“Understanding the volatile components of interstellar objects that pass through our solar system grants us unique insights into the chemical and physical processes occurring in distant stellar systems,” noted Dr. Rohan Rahatgaonkar of the Catholic University of Chile.

“Interstellar objects maintain remnants of the chemical and physical processes active in their protoplanetary disks during formation and may be altered by interstellar medium exposure.”

“When subjected to solar radiation, these cometary interstellar objects emit solids and gases due to their activity.”

During July and August, astronomers carried out high-resolution spectroscopic analyses as 3I/ATLAS approached between 4.4 to 2.85 AU from the Sun.

To acquire the comet’s spectrum, they employed the VLT’s X-Shooter and the Ultraviolet and Visible Echelle Spectrometer (UVES).

Observations revealed that the comet’s coma, the cloud of dust and gas enveloping its nucleus, is primarily made up of dust, with a consistent reddish optical continuum indicating organic-rich materials.

This reddish coloration resembles that of comets within our solar system and primitive Kuiper belt objects, suggesting shared physical processes across the planetary system.



3I/ATLAS spectrum showing Ni I emission over observations from VLT/X-Shooter and VLT/UVES. Image credit: Rahatgaonkar et al., doi: 10.3847/2041-8213/ae1cbc.

As 3I/ATLAS continued its journey towards the Sun, researchers identified emissions of various cyanide (CN) compounds and neutral nickel (Ni).

Interestingly, iron (Fe) was not detected, implying that nickel is efficiently released by comatose dust particles under solar radiation influence.

The rate of production for these emissions increases significantly as the comet nears the Sun, establishing a strong power-law relationship with its geocentric distance.

These observations indicate that the release of these atoms may stem from low-energy mechanisms, like photon-stimulated desorption or the breakdown of complex organics, rather than the direct sublimation of ice. This distinguishes this interstellar comet from many others within the solar system.

This spectral data not only acts as a snapshot of a transient visitor, but interstellar comets like 3I/ATLAS offer pristine samples from materials formed around other stars. Their limited processing from solar proximity preserves valuable clues about distant protoplanetary disks—the swirling clouds of gas and dust which eventually form planets.

Past interstellar discoveries, such as ‘Oumuamua in 2017 and 2I/Borisov in 2019, have exhibited surprising contrasts. ‘Oumuamua appeared inert, while 2I/Borisov showcased an abundance of carbon monoxide and complex ice.

The new insights from 3I/ATLAS contribute another intriguing layer to this expanding cosmic narrative. Its dusty constitution reveals molecular traits that challenge our understanding of typical comet behavior and introduce novel physics.



3I/ATLAS spectrum from the monitoring campaign spanning July 4 to August 21, 2025. Image credit: Rahatgaonkar et al., doi: 10.3847/2041-8213/ae1cbc.

“If 3I/ATLAS maintains the absence of iron while exhibiting nickel emissions during perihelion, it will set a precedent for observing interstellar comet metal emissions decoupled from traditional refractory trends,” the researchers stated.

“This observation suggests a distinct low-temperature organometallic pathway for nickel in exocomets and may provide fresh perspectives on how disk chemistry, metallicity, and irradiation history affect planetesimal microphysics.”

The parent star of 3I/ATLAS is presumed to be less metallic than other interstellar progenitor stars, yet more metallic than the Sun, indicating no inherent conflict between its estimated age and the presence of iron-peak elements like nickel.

“Regardless of which interpretation is accurate, 3I/ATLAS promises a critical experiment linking metal emissions with volatile activation and particle physics in interstellar bodies.”

“The findings discussed will elevate nickel from being a mere curiosity into a crucial marker for determining both parent chemistry and galactic origins, and set new standards for rapid-response spectroscopy of interstellar objects at the Rubin Observatory and ESO’s Very Large Telescope.”

For further details, see the published findings on December 10, 2025, in the Astrophysics Journal Letter.

_____

Rohan Rahat Gaonkar et al. 2025. Observations of interstellar comet 3I/ATLAS using a very large telescope: From quiescence to luminescence—Dramatic increases in Ni i emissions and initial CN outgassing at extensive heliocentric distances. APJL 995, L34; doi: 10.3847/2041-8213/ae1cbc

Source: www.sci.news

VLTI captures high-resolution images of red supergiant star in Large Magellanic Cloud

used by astronomers ESO’s Very Large Telescope Interferometer (VLTI) has taken an enlarged image of the dusty red supergiant star WOH G64.

This image, taken by ESO’s Very Large Telescope Interferometer’s GRAVITY instrument, shows the red supergiant star WOH G64. Image credit: ESO / Onaka others., doi: 10.1051/0004-6361/202451820.

WOH G64 is located in the constellation Shira, about 160,000 light years away.

The star, also known as IRAS 04553-6825, 2MASS J04551048-6820298, or TIC 30186593, is part of the Large Magellanic Cloud, one of the smaller galaxies orbiting the Milky Way.

WOH G64 is approximately 2,000 times larger than the Sun and is classified as a red supergiant star.

“We discovered an egg-shaped cocoon that tightly surrounds this star,” said Dr. Keiichi Onaka, an astrophysicist at Andres Bello University.

“We’re excited because this could be related to the rapid ejection of material from a dying star before it explodes into a supernova.”

“Astronomers have taken zoomed-in images of and characterized about two dozen stars in our Milky Way galaxy, but countless other stars exist in other galaxies. and were so far away that it was very difficult to observe one of them in detail.

Artist’s reconstruction of the red supergiant star WOH G64. Image credit: ESO/L. Calçada.

Dr. Onaka and his colleagues have been interested in WOH G64 for a long time.

In 2005 and 2007, they used VLTI to learn more about the star’s properties and continued their research in the years since. However, the actual appearance of this star remained elusive.

To achieve the desired photos, it was necessary to wait for the development of VLTI’s second generation equipment. gravity.

After comparing the new results with other previous observations of WOH G64, they were surprised to find that the star had become fainter over the past decade.

Professor Gerd Weigert, an astronomer at the Max Planck Institute for Radio Astronomy, said: “We found that this star has undergone significant changes over the past 10 years, and this is a rare opportunity to witness the life of a star in real time.” he said. .

During the final stages of their lives, red supergiant stars like WOH G64 shed their outer layers of gas and dust in a process that lasts thousands of years.

Dr Jacco van Loon, director of the Kiel Observatory at Kiel University, said: “This star is one of the most extreme of its kind and any dramatic changes could bring it closer to an explosive demise. ” he said.

“These ejected materials may also be responsible for the dimming and the unexpected shape of the dust cocoon around the star,” the astronomers said.

The new image shows the cocoon elongating, surprising researchers who had expected a different shape based on previous observations and computer models.

They believe that the cocoon’s egg-like shape could be explained by the star’s molting or the influence of an as-yet-undiscovered companion star.

As the star dims, it becomes increasingly difficult to take other close-up photos, even VLTI.

Nevertheless, in the future, an update of the telescope’s instruments is planned. Gravity+I promise to change this soon.

“Similar follow-up observations using ESO’s instruments will be important for understanding what is happening inside this star,” said Dr. Onaka.

of the team paper Published in a magazine astronomy and astrophysics.

_____

Kento Ohnaka others. 2024. Image of the innermost circumstellar environment of the red supergiant star WOH G64 in the Large Magellanic Cloud. A&A 691, L15; doi: 10.1051/0004-6361/202451820

Source: www.sci.news