LIGO hunts for gravitational waves produced by mountains on neutron stars

While the solar system’s moons such as Europa and Enceladus have thin crusts over deep oceans, Mercury has a thin crust over a large metallic core. Thin sheets are generally likely to wrinkle. Europa has linear features, Enceladus has “tiger stripes” and Mercury has foliated cliffs. Neutron stars may have similar characteristics. These neutron star mountains can generate detectable oscillations in space and time known as gravitational waves, according to a new study.

Artist’s impression of a neutron star. Image credit: Sci.News.

Neutron stars are a trillion times denser than lead, and their surface features are largely unknown.

Nuclear theorists investigated the mountain-building mechanisms active on the moons and planets of the solar system.

Some of these mechanisms suggest that neutron stars likely have mountains.

A mountain in a neutron star would be much more massive than any mountain on Earth. They are so huge that the gravitational pull from these mountains alone can generate gravitational waves.

of Laser interferometer Gravitational wave observatory (LIGO) is currently looking for these signals.

“These waves are so weak that they require highly detailed and sensitive techniques carefully tuned to the expected frequencies and other signal characteristics,” said nuclear astrophysicist Jorge Morales and professor Charles Horowitz at Indiana University. It can only be discovered through search.”

“The first detection of continuous gravitational waves opens a new window on the universe and will provide unique information about neutron stars, the densest objects after black holes.”

“These signals may also provide sensitive tests of fundamental laws of nature.”

The authors investigated the similarities between neutron star mountains and surface features of solar system objects.

“While both neutron stars and certain moons, such as Jupiter’s moon Europa and Saturn’s moon Enceladus, have a thin crust over a deep ocean, Mercury has a thin crust over a large metallic core. The thin sheet Wrinkles are universally possible,” they said.

“Europa has linear features, Enceladus has tiger-like stripes, and Mercury has curved, step-like structures.”

“Mountained neutron stars may have similar types of surface features that can be discovered by observing continuous gravitational wave signals.”

“Earth’s innermost core is anisotropic, and its shear modulus is direction-dependent.”

“If the material in the neutron star’s crust is also anisotropic, a mountain-like deformation will occur, and its height will increase as the star rotates faster.”

“Such surface features could explain the maximum spin observed in neutron stars and the minimum possible deformation of radio-emitting neutron stars known as millisecond pulsars.”

team’s paper Published in a magazine Physical Review D.

_____

JA Morales and CJ Horowitz. 2024. The anisotropic neutron star crust, the mountains of the solar system, and gravitational waves. Physics. Rev.D 110, 044016; doi: 10.1103/PhysRevD.110.044016

Source: www.sci.news

Murchison Wide Field Array hunts for signs of alien technology beyond our galaxy

Astronomers Murchison Widefield Alley Researchers in Western Australia conducted a search for extraterrestrial signals emanating from around 2,800 galaxies pointing towards the Vela supernova remnant with a spectral resolution of 10 kHz.

This diagram shows what a Kardashev Type III civilization might operate like. Containing stellar energy in so-called Dyson spheres is one way to harness the enormous energy on a galactic scale. The resulting waste heat products should be detectable with telescopes. Image by Danielle Futselaar / ASTRON.

“When we think about the search for extraterrestrial intelligence, we often consider the age and advancement of technology that could produce signals that we could detect with telescopes,” said Dr Chenoa Tremblay from the SETI Institute and Professor Steven Tingay from Curtin University.

“In popular culture, advanced civilizations are depicted as having interstellar spacecraft and the means to communicate.”

“In the 1960s, astrophysicist Nikolai Kardashev proposed a scale for quantifying the degree of technological advancement of extraterrestrial intelligence.”

“The Kardashev scale has three levels. A Type I civilization uses all the energy available on its planet (1016 W); Type II civilizations can consume stellar energy directly (1026 W) and a Type III civilization could consume all the energy emitted by the galaxy (1036 “W)”

“Civilizations at the higher end of the Kardashev scale could generate vast amounts of electromagnetic radiation detectable at galactic distances.”

“Some of the ideas that have been explored in the past have been to harness the light of stars in our galaxy, to colonize the solar system, and to use pulsars as a communications network.”

“Radio waves' ability to penetrate space over long distances and even planetary atmospheres makes them a practical tool for searching for interstellar communications.”

The authors used the Murchison Widefield Array (MWA), focusing on low radio frequencies (100 MHz), to look for signs of alien technology in galaxies beyond the Milky Way.

They observed about 2,800 galaxies in one observation, and determined the distances to 1,300 of them.

“This research represents a major step forward in efforts to detect signals from advanced extraterrestrial civilizations,” Dr Tremblay said.

“The MWA's wide field of view and low-frequency range make it an ideal tool for this type of study, and the limits we set will guide future research.”

of work Appeared in Astrophysical Journal.

_____

CD Tremblay & SJ Tingay. 2024. An extragalactic wide-field search for technosignatures with the Murchison Wide Field Array. ApJ 972, 76;doi:10.3847/1538-4357/ad6b11

Source: www.sci.news