Common Gut Bacteria Can Transform Everyday Plastic Waste into Paracetamol

Paracetamol, also known as acetaminophen, is a pain reliever traditionally produced from a diminished supply of fossil fuels, such as crude oil. Every year, thousands of tons of fossil fuels, alongside numerous drugs and chemicals, are utilized to transport painkillers to manufacturing facilities. Professor Stephen Wallace from the University of Edinburgh and his team discovered that E. coli bacteria can transform molecules derived from waste plastic bottles into paracetamol.

Johnson et al. Reporting the reorganization of phosphate-catalyzed loss of biocompatibility in bacteria E. coli Activated acylhydroxamate is transformed into primary amine-containing metabolites in living cells. Image credit: Johnson et al. , doi: 10.1038/s41557-025-01845-5.

The issue of plastic waste is increasingly pressing, making the quest for sustainable plastic upcycling solutions a priority.

Metabolic engineering combines organic chemistry with the exploitation of biological cell chemical reaction networks to create new small molecules.

However, it remains uncertain whether these reactions can be effectively combined to convert plastics into useful products.

“Our research indicates that polyethylene terephthalate (PET) plastic is not merely waste, but can be converted by microorganisms into valuable new products with potential applications in disease treatment,” stated Professor Wallace.

In their study, Professor Wallace and co-authors found that a specific type of chemical reaction, known as loss rearrangement, occurs within living cells and is catalyzed by internal phosphates in E. coli.

This reaction produces nitrogen-containing organic compounds that are vital for cellular metabolism.

The researchers demonstrated that chemical processes can decompose PET plastic to yield starting molecules for further reactions, allowing cellular metabolism to regenerate these plastic-derived molecules.

Additionally, they discovered that this plastic-derived compound can serve as a precursor for paracetamol production in E. coli, achieving a yield of 92%.

This finding may mark the first instance of paracetamol synthesized from E. coli waste materials.

Future research will focus on exploring how other bacteria and types of plastics can yield beneficial products.

“Thus, biocompatible chemistry should be viewed as a complement to early enzyme design research and non-biological chemistry engineering, integrating collaboratively as a tool for biological cells to enhance potential synthetic chemistry within biological systems,” the scientists noted.

The team’s study was published in the journal Nature Chemistry on June 23, 2025.

____

NW Johnson et al. Relocation of loss of biocompatibility in E. coli. Nat. Chem. Published online on June 23, 2025. doi:10.1038/s41557-025-01845-5

Source: www.sci.news