Richard III’s skull
Carl Vivian/University of Leicester
The oral microbiome extracted from King Richard III, derived from analysis of his dental plaque, indicates he may have suffered from a condition that could lead to jaw deterioration.
In 2012, the skeletal remains of Richard III were found beneath a parking lot at the former Greyfriars Church in Leicester, England. Initially thought to be Richard III—who was killed in the Battle of Bosworth Field in 1485 and interred in Leicester—dental and skeletal evidence, including a head wound and spinal curvature, correlated with descriptions from his death. Subsequent genetic tests confirmed the identity of the remains.
Although Richard’s reign only lasted two years amid the Wars of the Roses, he significantly impacted English history, with allegations of plotting against his nephews while they were imprisoned in the Tower of London, alongside William Shakespeare’s portrayal of him as a malevolent figure in his famous play.
Nevertheless, details of Richard’s daily existence are scarce. To uncover more, Turi King and fellow researchers at the University of Bath, UK, collected samples of tartar—hardened dental plaque—from three of his well-preserved teeth.
Dental plaque is effectively a time capsule, retaining DNA from microorganisms and remnants of food. “The quantity of DNA obtained from Richard III’s tartar is among the highest recorded in archaeological contexts,” the researchers stated, noting the detection of over 400 million DNA sequences.
“No one has previously sequenced 400 million ancient DNA fragments; it’s an astonishing figure,” remarks Laura Weyrich from Pennsylvania State University. “This indicates that our capabilities with ancient DNA are likely more extensive than previously thought.”
Dr. King and his team identified almost 400 microbial species from the DNA, comparable in variety to samples from well-preserved dental tartar across Britain, Ireland, Germany, and the Netherlands over the last 7,000 years, spanning from the Neolithic to modern times. “It suggests that elite populations shared microbial strains akin to those of the broader populace, despite their affluent lifestyles and experiences,” Weyrich notes.
However, the research team could not collect adequate plant or animal DNA to determine Richard’s dietary habits. Nevertheless, previous studies on his bones from his last two years indicated he drank non-local wine and consumed large quantities of game, fish, and birds, including swans and herons.
Professor Weyrich indicated that results regarding the microbiome could vary if the team obtained samples from more than one tooth and compared them to similar teeth from groups in Germany or the Netherlands. She also mentioned that their limited sampling does not provide a comprehensive view of Richard’s oral microbiome, as distinct bacteria inhabit different areas of the mouth and different surfaces of the teeth.
The king’s well-preserved teeth may provide insights into his oral microbiome.
Carl Vivian/University of Leicester
One particularly prevalent bacterium identified is Tannerella forsythia, which is linked to periodontal disease, a serious gum infection that can lead to bone loss around the teeth. Given the poor oral hygiene of the 15th century, Richard had a cavity when he died at age 32, though this does not automatically indicate he had periodontal disease.
“Many individuals may harbor potentially harmful bacteria without becoming ill, while others could become infected,” explains Pierre Stollforth from the Leibniz Institute for Natural Products Research and Infection Biology in Germany. Weyrich adds that examining bone loss in the jaw could reveal if Richard suffered from periodontal disease.
“I’m particularly passionate about bridging social science, history, and genetics,” Stallforth states. “Having access to the dental tartar of historical figures is extraordinary as it enables us to gain deeper insights into their lives.”
topic:
Source: www.newscientist.com
