Caffeine Unveils New Insights into Star Formation in Dense Gas Environments

Astronomers reveal new insights into the factors influencing star formation efficiency in the densest regions of galaxies through Caffeine research.



GAL316: A massive star-forming region. Image credit: ESO / M. Matten / André et al. / VVV.

In this groundbreaking study, astronomer Michael Mattern from the University of Paris-Saclay and his team meticulously mapped dense gas across 49 giant star-forming complexes located approximately 3,000 parsecs away within our galaxy’s disk.

“Creating stars is a challenging endeavor, and the process lacks efficiency,” the astronomers stated.

“Current understanding indicates that a certain minimum density of gas and dust is necessary for stars to form.”

“Only about 1 to 2 percent of the gas and dust in these regions is utilized in the ignition of a star.”

“Could denser regions exhibit higher efficiency in star formation?”

“We are examining GAL316, one of the remarkable stellar nurseries we observed, to explore this question,” they elaborated.

The ongoing CAFFEINE survey employs the ArTéMiS camera on the Atacama Pathfinder Experiment (APEX), a state-of-the-art radio telescope situated on the Chajnantor Plateau.

“APEX, managed by the Max Planck Institute for Radio Astronomy, has successfully captured the faint emissions of cold gas clouds, visible as blue glows in GAL316 images,” the researchers revealed.

“This glow overlays a starry backdrop, successfully recorded by ESO’s VISTA telescope.”

They discovered that as gas density increases past a specific threshold, the efficiency of star formation – the conversion rate of gas into stars – does not proportionately escalate.

This observation contradicts existing models that suggest a continual rise in star formation with density increases.

Conversely, the efficiency remains nearly constant in extremely dense gas, reinforcing the notion that stars primarily form within filamentous structures in clouds, a process dictated by the fragmentation of these filaments into protostar cores.

The findings suggest a potential gas density threshold for efficient star formation, bolstering the hypothesis that the physics of dense filaments governs star formation, rather than turbulence or feedback from nascent stars alone.

This research represents one of the most thorough efforts to date in connecting the physical structure of dense gas with star formation efficiency, paving the way for future observations and simulations that aim to elucidate the emergence of Sun-like stars from interstellar clouds.

“Our results indicate that the densest regions observed in this Caffeine study show similar efficiencies in star production compared to other stellar nurseries, provided they exceed the minimum density,” the scientists remarked.

Their findings are detailed in a published paper in the journal Astronomy and Astrophysics.

_____

M. Mattern et al. 2024. Investigating star formation efficiency in dense gas: Initial results from the CAFFEINE survey utilizing ArTéMiS. A&A 688, A163; doi: 10.1051/0004-6361/202449908

Source: www.sci.news

Webb Identifies Dense Atmosphere of Ultra-Hot Super-Earth TOI-561b

Recent findings from the NASA/ESA/CSA James Webb Space Telescope indicate that TOI-561b is enveloped by a dense gas blanket above its global magma ocean.



This artist’s concept illustrates TOI-561b and its stars. Image credit: NASA/ESA/CSA/Ralf Crawford, STScI.

TOI-561 is a luminous star located 280.5 light-years away in the constellation Sextant.

This star is approximately 10 billion years old and has about 80% of the Sun’s mass and size.

It is also known as TYC 243-1528-1 and belongs to a rare category of stars known as the galaxy’s thick disk stars.

TOI-561 hosts at least three exoplanets (TOI-561b, c, and d) and is among the oldest and most metal-poor planetary systems discovered in the Milky Way.

The inner planet, TOI-561b, is classified as a super-Earth with an orbital period of just 0.44 days.

Its mass and radius are 3.2 and 1.45 times that of Earth, with a density of 5.5 g/cm³, consistent with its rocky composition.

“What distinguishes this planet is its notably low density,” remarked Dr. Johanna Teske, an astronomer at the Carnegie Institution for Science.

“It is not significantly bloated, yet it is less dense than would be expected for an Earth-like composition.”

One potential reason for the low density, astronomers suggest, is that it may possess a relatively small iron core and a mantle composed of less dense rock compared to Earth’s.

“TOI-561b is exceptional among ultrashort-period planets as it orbits a substantially older (twice the age of the Sun), iron-poor star within the thick disk region of the Milky Way,” Teske added.

“It likely formed under a vastly different chemical environment than the planets in our solar system.”

Researchers also posit that TOI-561b is encircled by a thick atmosphere, possibly giving it an apparent size larger than its actual one.

Although small planets subjected to intense stellar radiation for billions of years are not anticipated to possess atmospheres, some are exhibiting characteristics beyond mere rocky surfaces or lava.

To investigate the possibility of TOI-561b having an atmosphere, they employed: Webb’s NIRSpec (near infrared spectrometer). This device measures the planet’s daytime temperature through near-infrared brightness.

The technique tracks the decrease in brightness of the star-planet system as the planet transits behind its star, similar to methods used for detecting atmospheres of rocky worlds like the TRAPPIST-1 system.

If TOI-561b were devoid of an atmosphere and comprised entirely of bare rock, daytime temperatures would approach 2,700 degrees Celsius (4,900 degrees Fahrenheit).

However, NIRSpec observations indicate that the planet’s dayside temperature is closer to 1,800 degrees Celsius (3,200 degrees Fahrenheit), indicating it remains extremely hot, but considerably cooler than anticipated.



Emission spectra captured by Webb in May 2024 illustrate the brightness of different wavelengths of near-infrared radiation emitted by the exoplanet TOI-561b. Image credits: NASA / ESA / CSA / Ralf Crawford, STScI / Johanna Teske, Carnegie Institute for Science, Earth and Planets / Anjali Piette, University of Birmingham / Tim Lichtenberg, Groningen / Nicole Wallack, Carnegie Institute for Science, Earth and Planets.

To interpret these findings, the researchers evaluated multiple scenarios.

A magma ocean could redistribute some heat; however, without an atmosphere, the night side is likely solid, limiting heat transfer from the day side.

There may be a thin layer of rock vapor above the magma ocean’s surface, but this alone could cause less significant cooling than observed.

Dr. Anjali Piette, an astronomer at the University of Birmingham, stated, “We truly require a thick atmosphere rich in volatiles to account for all observations.”

“Strong winds could transport heat to the night side while cooling the day side.”

“Gases such as water vapor absorb some wavelengths of near-infrared radiation emitted from the planet’s surface before reaching the atmosphere.”

“Bright silicate clouds might also reflect starlight and cool the atmosphere.”

Although Webb’s findings provide compelling evidence of an atmosphere, the question persists: How can such a small planet exposed to intense radiation maintain an atmosphere, especially one of such significance? Some gas is likely escaping into space, but possibly at a lower rate than expected.

“We believe there is a balance between the magma ocean and the atmosphere,” said Tim Lichtenberg, an astronomer at the University of Groningen.

“As gases escape from the Earth to form the atmosphere, the magma ocean simultaneously reabsorbs them.”

“To account for these observations, this planet would need to be far richer in volatile materials than Earth. It resembles a wet lava ball.”

Findings from this study will be published in today’s Astrophysics Journal Letter.

_____

Johanna K. Teske et al. 2025. A dense volatile atmosphere over the ultra-hot super-earth TOI-561b. APJL 995, L39; doi: 10.3847/2041-8213/ae0a4c

Source: www.sci.news

Enhanced Cancer Screening Could Detect Early Cases in Women with Dense Breasts

High-density breast tissue and tumors resemble each other on scans.

Golodenkov/Shutterstock

Recent research indicates that those with dense breast tissue may gain from an additional round of cancer screening, as a significant trial uncovered tumors that were overlooked in standard mammograms.

In the UK, mammograms—an x-ray scan used for breast cancer screening—are provided for individuals aged 50 to 71. These scans look for white spots that indicate cancer presence. However, around 50% of women in this age range have dense breasts, characterized by a high amount of fibrous and glandular tissue, also appearing white on the scans. This similarity complicates tumor detection.

“The challenge with dense breasts is that cancers may go unnoticed until they grow significantly large, which negatively affects prognosis,” said Thomas Hervich, who wasn’t a part of the study at the Medical University of Vienna in Austria.

To determine whether additional screenings can help, Sarah Vinnicombe and her colleagues at the University of Dundee recruited over 6,000 women aged 50-70 from across the UK. Participants were randomly divided into three groups, each receiving extra screening through advanced x-ray methods such as MRI, ultrasound, or contrast-enhanced mammography.

In this extended screening phase, MRI and contrast-enhanced mammography together identified 85 small tumors—three times as many as detected by ultrasound. Twelve of these tumors were located in milk ducts, suggesting a lower likelihood of spreading beyond the breast. Conversely, the other 73 tumors were invasive, increasing the risk that cancer could migrate into surrounding breast tissue and beyond.

“Detecting these cancers is crucial. They typically grow over time, and finding them within three to four years can lead to larger sizes,” stated Hervich. “Some tumors are aggressive, so I believe supplemental screening could save lives.”

However, it’s uncertain if this will hold true. For instance, a 2021 trial on ovarian cancer screening revealed a decrease in cases but did not correlate with increased longevity. Additionally, some tumors detected may not be cancerous or aggressive. Thus, unnecessary screening could lead to undue anxiety and treatment.

The researchers plan to continue monitoring participants to assess whether supplementary screenings result in saved lives.

topic:

Source: www.newscientist.com