How Lab-Grown Lichens Could Revolutionize Habitat Construction on Mars

Synthesized lichen that shines bright blue under ultraviolet light.

As I explore the fascinating world of lichens, I often find myself captivated by their unique growths on tree branches, rocky outcrops, and gravestones. Although I have encountered numerous lichens during my research on symbiosis, discovering them in a laboratory flask swirling in an incubator was a novel experience. Recently, I’ve begun to contemplate the insights lichens can provide, not just about our past but about the potential for our future.

The green liquid in the incubator may not resemble typical lichen, as this is actually a synthetic alternative. According to Rodrigo Ledesma Amaro, director at the Bezos Center for Sustainable Protein, this co-culture comprises fungi (yeast) and cyanobacteria. Much like natural lichens, the fungal component acts as a structural host while cyanobacteria leverage sunlight, water, and carbon dioxide to create sugars during photosynthesis.

What drives the creation of such “potion”? As Ledesma-Amaro explains, genetically edited yeast can produce useful products—food, fuels, and medications—which can be created sustainably through photosynthesis. Today’s synthetic lichens present exciting opportunities within the biotechnology sector. They hold potential for repairing infrastructures, mitigating climate change, and even crafting habitats on Mars.

“Synthetic lichens replicate the symbiotic nature of natural lichens but grow significantly faster,” says Ledesma-Amaro. Their use of yeast facilitates large-scale production of valuable compounds, like caryophyllene—a vital ingredient in pharmaceuticals, cosmetics, and fuel. Notably, alternative synthetic lichens could be engineered for carbon capture and storage, while ongoing research pursues their use in revitalizing aging concrete structures worldwide. The future application of lichens could even extend beyond Earth, with NASA exploring ways to cultivate engineered lichens on the Moon and Mars for building purposes.

The Science of Symbiosis

Though unassuming, lichens exemplify the essence of symbiosis, where diverse species coexist harmoniously. Typically, lichens consist of fungal partners that host photobionts—algae or bacteria—that produce food through photosynthesis while the fungus shelters them. This arrangement enables lichens to thrive in extreme conditions, fostering scientific interest in creating synthetic counterparts.

Lichens demonstrate two key benefits: their interdependent nature allows them to accomplish more together than individually, and their resilience enables survival in harsh environments. In some regions like Svalbard, where around 700 lichen species exist, they tolerate frigid temperatures, salinity, and other extreme conditions. Curious scientists continue to explore how these organisms endure aridity and temperature fluctuations.

Lichens represent a fascinating life form sustained through a symbiotic relationship.

Jose B. Luis/naturepl.com

Researchers propose that lichen resilience stems from biomolecules formed by filamentous fungi, which provide protection to the entire community. Moreover, their slow growth allows them to persist with minimal resources. Together, these qualities offer lichens unique advantages over single-species organisms.

Space Lichens: The Future of Exploration

These attributes have sparked interest from NASA due to lichens’ ability to withstand simulated and real space conditions. For instance, lichens like Cirquinaria girosa survived outside the International Space Station for over 18 months. Their capacity for growth within rocks and survival in space conditions has intrigued scientists and advocates alike.

Kongrui Jin, a biomaterials engineer at Texas A&M University, recognizes the potential of lichens in future space habitats. Proposals for extraterrestrial homes often use inflatable structures, reducing the need to transport materials from Earth. However, opportunities exist to produce building materials directly from Martian regolith using lichen-based solutions.

Lichens have survived in space, proving their resilience and adaptability.

ESA

“We aim to merge these fungi with photosynthetic species like cyanobacteria,” Jin elaborates. “This combination can convert sunlight into organic nutrients while binding Martian soil particles into cohesive structures.” The biomaterials produced could be utilized with 3D printing technology for constructing habitats.

Jin’s research illustrates the potential of lichens in transforming Martian regolith into conducive building materials. They also offer routes toward producing biominerals and biopolymers, leading some futurists to envision them as key players in terraforming Mars. Yet even without strict planetary protection measures, lichens will need shielding from the harsh Martian surface conditions to flourish.

The Future of Architecture with Lichens

While colonizing other planets remains a distant goal, the application of lichens offers immediate benefits on Earth. They can aid in bundling rubble for construction, notably in rebuilding after natural or human-made disasters. Furthermore, incorporating methods that sequester carbon in concrete production could significantly lessen its environmental impact.

Jin and her colleagues successfully demonstrated that integrating lichen-based combinations of fungi and cyanobacteria can grow in concrete, precipitating calcium carbonate to repair structural cracks efficiently. “This method shows much higher survival rates compared to other microbes in challenging conditions,” she states. These synthetic lichens can extract nitrogen from the air, negating the need for external nutrient supplementation.

Meanwhile, Khakhar is exploring ways to enhance lichen growth by selecting and modifying fast-growing microorganisms. His lab is developing synthetic lichens similar to Jin’s, paving the way for sustainable production of building materials through biomanufacturing, termed “mycomaterials.”

My journey into the world of symbiosis reveals that lichens embody complex ecosystems—a vivid lesson in interdependence and their futuristic potential in shaping our materials. The next time you encounter a lichen adorning a tree or tombstone, take a moment to reflect on the incredible possibilities these organisms hold for our future.

Topic:

Source: www.newscientist.com

Mid-Debonian Ocean Oxygenation Enables Deeper Habitat Expansion for Marine Life

Approximately 390 million years ago during the Devonian period, marine life began to explore previously unoccupied depths. A recent study, conducted by researchers from Duke University, Washington University, NASA’s Virtual Planetary Research Institute, and Caltech, reveals that this underwater migration was spurred by a lasting increase in deep-sea oxygen levels, linked to the ground diffusion of woody plants. This rise in oxygen coincided with a time of notable diversification among jawed fish.

Artistic rendering of Brindabellaspis stensioi (foreground) alongside various other Devonian fossil fish. The white shark and human divers in the upper right corner symbolize modern jaw vertebrates. Image credits: Hongyu Yang/Qiuyang Zheng.

“While oxygen is recognized as essential for animal evolution, establishing its role in trends of animal diversification can be challenging,” remarks Dr. Michael Kipp, a researcher at Duke University.

“This study strongly supports the idea that oxygen has influenced the timing of early animal evolution, particularly concerning the emergence of jawed vertebrates in deep-sea environments.”

For years, scientists believed that deep-sea oxygenation was a singular event that occurred at the onset of the Paleozoic era, around 540 million years ago.

However, recent findings suggest that oxygenation takes place in stages, first making coastal regions more hospitable for respiratory organisms, followed by deeper waters.

Dr. Kipp and his team investigated the timing of these stages by examining sedimentary rocks formed beneath deep seawater.

They focused on selenium within the rocks, an element utilized to ascertain whether oxygen levels were high enough to support life in the ancient ocean.

In marine settings, selenium exists in various forms known as isotopes, which differ based on weight.

At oxygen levels conducive to animal life, the ratio of heavy to light selenium isotopes shows significant variation.

Conversely, at oxygen levels too low for most animals, the ratios remain relatively stable.

By analyzing selenium isotope ratios in marine sediments, researchers can deduce whether oxygen levels were adequate to sustain aquatic life.

The team collected 97 rock samples from around the globe, dating from 252 to 541 million years ago.

These samples were sourced from locations across five continents that were once situated along continental shelves millions of years ago, where the continental edge meets a steep drop-off underwater.

After processing the rocks through grinding, melting, and purifying selenium, the team examined the selenium isotope ratios in each sample.

Their findings reveal that two significant oxygenation events took place in deeper waters of the outer continental shelf, starting during the Mid Devonian, around 540 million years ago, and again between 393 and 382 million years ago during the Paleozoic’s Cambrian period.

For extended periods, oxygen levels plummeted, making survival challenging for most marine life.

“Our selenium data indicates that the second oxygenation event was permanent,” stated Kunmanee ‘Mac’ Bubphamanee, PhD candidate at the University of Washington.

“This event initiated in the mid-Devonian period and has persisted in our younger rock samples.”

This oxygenation event coincided with significant changes in ocean evolution and ecosystems, often referred to as the Paleozoic marine revolution.

Fossil evidence indicates that oxygen became a stable presence in deeper waters, allowing jawed fish known as Gnathostomes to invade and diversify in these environments.

These organisms grew larger, likely due to the supportive oxygen levels facilitating their growth.

The Devonian oxygenation event also correlated with the proliferation of woody plants.

“Our hypothesis posits that the increase in woody plants released more oxygen into the atmosphere, thereby elevating oxygen levels in deeper marine environments,” Dr. Kipp stated.

The cause behind the initial temporary oxygenation event during the Cambrian period remains more obscure.

“What is evident is that the subsequent drop in oxygen post-initial event constrained the spread and diversification of marine animals into deeper continental shelf environments,” Dr. Kipp explained.

“Today, marine oxygen levels are balanced with those in the atmosphere.”

“However, in specific zones, marine oxygen can plummet to undetectable levels.”

“Some of these areas arise from natural phenomena.”

“Still, they are frequently exacerbated by nutrient runoff from fertilizers, industrial activities that degrade plankton, and subsequent oxygen depletion as it decomposes.”

“This research clearly outlines the relationship between oxygen and marine life.”

“It’s a balance established around 400 million years ago, and it would be regrettable to disrupt it in the years to come.”

This study is set to be published this week in Proceedings of the National Academy of Sciences.

____

Kunmanee Bubphamanee et al. 2025. Marine oxygenation in Mid Devonian allowed the expansion of animals into deeper water habitats. PNAS 122 (35): E2501342122; doi: 10.1073/pnas.2501342122

Source: www.sci.news

A Saltwater Pool in an Underwater Volcano: Habitat for Extraterrestrial Life Forms?

SEI 259096022

Creatures uncovered near the Mabahismon volcano in the Red Sea, such as amphipods and polychaete worms

Dr. Katrin Linse

Ultra-salty lakes rich in carbon dioxide can support extreme life forms that differ from those found in other environments.

Dense saline water, laden with minerals, sinks to the ocean floor, where it can pool in depressions, creating unique brine lakes distinct from the upper waters. These brine pools, identified in various oceans, feature a unique chemical makeup—low in oxygen yet rich in particular minerals—allowing extreme microorganisms to thrive and evolve.

Recently, Froukje van der Zwan from King Abdullah University of Science and Technology in Saudi Arabia and her team have identified a novel brine pool that is warm, carbon-rich, and possibly nourished by underwater volcanic activity.

On a recent expedition to two underwater volcanoes in the Red Sea, Haty Bamons and Mabahismons, Van der Zwan and her colleagues found several brine pools located near the summit of the volcano, about five kilometers from mineral deposits where salt concentration increases. They also discovered regions with numerous hydrothermal vents releasing mineral-rich water at temperatures around 60°C (140°F).

Using a robotic vehicle for sampling revealed that the pool was warmer than the surrounding water and exhibited elevated levels of metallic elements like zinc and manganese.

The hot water vents also contained rich gas. “They show relatively high CO2 levels, similar to methane… however, unlike other hot water vents where liquids mix with seawater, this might function as a trap for these gases, being sequestered in the salt water here.”

Researchers are currently examining microbial samples collected from these pools to understand how life adapts to such extreme environments. Nearby hydrothermal vents revealed thick mats and diverse lifeforms, including polychaete worms and amphipods, featuring microorganisms considerably larger than known marine counterparts.

Living within a saline pool may offer insights into how life might thrive in harsh extraterrestrial environments, such as the salty, iron-rich oceans beneath the icy crust of Jupiter’s moon Europa. If hydrothermal activities exist beneath this surface, it could present scenarios similar to the iron-rich brine pool discovered by Van der Zwan and her research team.

topic:

Source: www.newscientist.com