Qubits Surpass Quantum Boundaries, Enabling Extended Information Encoding

Quantum particles now have an extended capacity to carry useful information.

koto_feja/Getty Images

The intriguing phenomenon of quantum superposition has enabled scientists to surpass the limitations imposed by fundamental quantum mechanics, equipping quantum objects with properties advantageous for long-term quantum computing.

For over a century, physicists have wrestled with the challenge of distinguishing between the minuscule quantum world and the larger macroscopic universe. In 1985, physicists Anthony Leggett and Anupam Garg introduced a mathematical assessment for determining the size threshold at which an object transcends its quantum characteristics. Quantum objects are recognized by remarkably strong correlations of their properties over time, akin to surprising connections between actions of yesterday and tomorrow.

Objects that achieve a sufficient score in this assessment are classified as quantum, with the scores traditionally held back by a value known as the temporal Zirelson limit (TTB). Theorists believed that even distinctly quantum objects could not surpass this threshold. However, Arijit Chatterjee and his colleagues from the Indian Institute of Science Education and Research in Pune have discovered a method to significantly exceed the TTB using one of the most basic quantum elements.

They centered their research on qubits, the essential building blocks of quantum computers and other quantum information systems. While qubits can be produced through various methods, the team utilized a carbon-based molecule incorporating three qubits. The first qubit was employed to control the behavior of the second “target” qubit over time, with the third qubit employed to extract properties from the target.

Though three-qubit configurations are generally believed to be constrained by the TTB, Chatterjee and his team discovered a method to push the target qubits beyond this limitation dramatically. In fact, their technique resulted in one of the most significant deviations from mathematical plausibility. The key was for the first qubit to govern the target qubit while it was in a state of quantum superposition, where it can effectively embody two states or actions that seem mutually exclusive. For instance, in their experiment, the first qubit directed the target qubit to rotate both clockwise and counterclockwise simultaneously.

Qubits are usually susceptible to decoherence over time, diminishing their capacity to store quantum information. However, after the target qubit surpassed the TTB, decoherence set in, yet the ability to encode information persisted five times longer due to its time-controlled behavior influenced by superposition.

According to Chatterjee, this resilience is advantageous in any context requiring precise qubit control, such as in computational applications. Team member HS Kartik from Poland’s University of Gdańsk mentions that procedures in quantum metrology, including accurate sensing of electromagnetic fields, could benefit significantly from this level of qubit control.

Rakura and their colleagues from China’s Sun Yat-sen University indicate that this research not only has clear potential for enhancing quantum computing practices but also fundamentally broadens our comprehension of how quantum objects behave over time. This is significant because immensely surpassing the TTB indicates that the properties of the qubit are highly interconnected at two divergent time points, a phenomenon absent in non-quantum entities.

The substantial breach of the TTB strongly demonstrates the extent of quantum characteristics present throughout the three-qubit configuration and exemplifies how researchers are advancing the frontiers of the quantum domain, says Karthik.

Topics:

  • quantum computing/
  • quantum physics

Source: www.newscientist.com

Quantum Computers with Recyclable Qubits: A Solution for Reducing Errors

Internal optics of Atom Computing’s AC1000 system

Atom Computing

Quantum computers, utilizing qubits formed from extremely cold atoms, are rapidly increasing in size and may soon surpass classical computers in computational power. However, the frequency of errors poses a significant challenge to their practicality. Researchers have now found a way to replenish and recycle these qubits, enhancing computation reliability.

All existing quantum systems are susceptible to errors and are currently unable to perform calculations that would give them an edge over traditional computers. Nonetheless, researchers are making notable advancements in the creation of error correction methods to address this issue.

One approach involves dividing the components of quantum computers, known as qubits, into two primary categories: operational qubits that manipulate data and auxiliary qubits that monitor errors.

Developing large quantities of high-quality qubits for either function remains a significant technical hurdle. Matt Norcia and his team at Atom Computing have discovered a method to lessen the qubit requirement by recycling or substituting auxiliary qubits. They demonstrated that an error-tracking qubit can be effectively reused for up to 41 consecutive runs.

“The calculation’s duration is likely to necessitate numerous rounds of measurement. Ideally, we want to reuse qubits across these rounds, minimizing the need for a continuous influx of new qubits,” Norcia explains.

The team utilized qubits derived from electrically neutral ytterbium atoms that were chilled close to absolute zero using lasers and electromagnetic pulses. By employing “optical tweezers,” they can manipulate each atom’s quantum state, which encodes information. This method allowed them to categorize the quantum computer into three distinct zones.

In the first zone, 128 optical tweezers directed the qubits to conduct calculations. The second zone comprised 80 tweezers that held qubits for error tracking, or that could be swapped in for faulty qubits. The third zone functioned as a storage area, keeping an additional 75 qubits that had recently been deemed useful. These last two areas enabled researchers to reset or exchange the auxiliary qubit as needed.

Norcia noted that it was challenging to establish this setup due to stray laser light interfering with nearby qubits. Consequently, researchers had to develop a highly precise laser control and a method to adjust the state of data qubits, ensuring they remained “hidden” from specific harmful light types.

“The reuse of Ancilla is crucial for advancing quantum computing,” says Yuval Borger from QuEra, a U.S. quantum computing firm. Without this ability, even basic calculations would necessitate millions, or even billions, of qubits, making it impractical for current or forthcoming quantum hardware, he adds.

This challenge is recognized widely across the atom-based qubit research community. “Everyone acknowledges that neutral atoms understand the necessity to reset and reload during calculations,” Norcia asserts.

For instance, Borger highlights that a team from Harvard and MIT employed similar techniques to maintain the operation of their quantum computer using 3000 ultra-cold rubidium atoms for several hours. Other quantum setups, like Quantinuum’s recently launched Helios machine, which uses ions controlled by light as qubits, also feature qubit reusability.

topic:

Source: www.newscientist.com