Scientists resurrect woolly mammoths with genetic technology and call them “mice”

The first researchers in science created mice that exhibit properties similar to extinct woolly mammoths.

Colossal Biosciences, an American Biotechnology Company, utilized CRISPR genome editing technology to develop the “Colossal Woolly Mouse.”

These mice are not miniature mammoths but have DNA designed to express mammoth-like properties, making them well-suited for cold environments.

An unpublished study published on Biorxiv explains how researchers modified seven mouse genes to give them a woolly coat.

This marks the first instance of a “living model” of animals with mammoth-like attributes.

Two “woolly mice” created by scientists

“Observing these mice is akin to peering into the past through a specialized lens,” said Dr. Louise Johnson, an evolutionary biologist at the University of Reading not involved in the study. “This technology provides an exciting avenue to test our theories about extinct organisms.”

She added, “Researchers successfully adjusted the mouse genome towards the mammoth genome for the first time.”

Through extensive computer analysis, researchers studied mammoth and African elephant genomes from 1.2 million years ago, modifying mouse genes related to hair growth and cold tolerance to create the final edited seven-gene combination. However, these mice do not possess an exact replica of mammoth genes, leading researchers to doubt the genes responsible for mammoth properties.

The Significance of this Discovery

According to Colossal Biosciences, this development is a groundbreaking step in addressing extinction. The company aims to reintroduce other extinct species with the goal of rebuilding ecosystems to maintain Earth’s balance. Founder Ben Lam envisions reviving species like dodos, giant ice age bears, and extinct Tasmanian marsupials known as thylacines.

Not all scientists are convinced of the immediate impact of this discovery.

While genetic manipulation has been used to create various models, including humans and extinct species, some remain skeptical. Professor Dusko Ilic, a stem cell science professor at King’s College London, acknowledges the milestone but warns of potential risks and ethical implications of such experiments.

While comparing mammoth and elephant genomes offers insights into adaptation and genetic traits, transforming mice into mammoth-like creatures may not directly translate to creating woolly elephants adapted for Arctic environments.

Many scientists doubt the feasibility of replicating mammoths through genetic manipulation alone without a complete understanding of their genetic makeup.

Read more:

Source: www.sciencefocus.com

Is it Possible that Quantum Clues in the Brain could Resurrect a Core Theory of Consciousness?

Two weeks before the pandemic lockdown in March 2020, I flew to Tucson, Arizona, and knocked on the door of a suburban ranch-style home. I was there to visit Stuart Hammeroff. He is an anesthesiologist and co-inventor with Nobel Prize-winning physicist Roger Penrose of a radical proposal for how conscious experience arises: that it has its origins in quantum phenomena in the brain.

Such ideas, in one form or another, have existed on the fringes of mainstream consciousness research for decades. There is no solid experimental evidence that quantum effects occur in the brain, as critics claim, and aside from a clear idea of ​​how quantum effects produce consciousness, they come in from the cold. Not that it was. “It was very popular to bash us,” Hammeroff told me.

But after a week of questioning him about the concept, I realized that at least his version of quantum consciousness is widely misunderstood. Partly, I think it’s Hammeroff’s fault. He gives the impression of a single package. In fact, his ideas are a series of independent proposals, each forcing us to confront important questions about the relationship between fundamental physics, biology, and the indescribable thing called consciousness. I am.

Furthermore, during my visit I saw several experiments that Hammeroff had proposed come to fruition, and it became clear that his ideas could be applied to experimental research. Researchers have now provided preliminary evidence suggesting that fragile quantum states can persist in the brain and that anesthetics can influence those states.

Now is the time to start taking it…

Source: www.newscientist.com