Why Dark Matter Is Still One of Science’s Greatest Mysteries

“As we approach the late 2020s, it is an incredibly exciting era for dark matter research…”

Sackmestelke/Science Photo Library

This is an extraordinary moment for dark matter researchers. Despite cuts in funding from governments globally, dark matter continues to represent one of the most captivating and significant unsolved mysteries in physics and in the broader scientific landscape. The majority of matter in the universe seems invisible. For every kilogram of visible matter, there are approximately five kilograms of dark matter. This is inferred from the gravitational influence dark matter exerts on the structures of visible components in the universe.

Galaxy clusters are most effectively explained when considering dark matter as a component. Observations of the distribution of the earliest light in the universe fit theoretical predictions only by including dark matter in the model. Many other observations similarly support this view. Dark matter is abundant and remains undetectable unless we study its effects on normal matter.

As we enter the late 2020s, it’s a thrilling period for dark matter research. Investigations by the European Space Agency’s Euclid Space Telescope promise to deepen our understanding of galactic structures. Simultaneously, the Vera C. Rubin Observatory has commenced a decade-long sky survey that is likely to transform our comprehension of satellite galaxies orbiting larger galaxies. These dynamics enhance our understanding of how dark matter influences visible matter.

Exploring phenomena we know exist yet cannot observe directly challenges our creativity as scientists. Some of the pivotal questions that we must ponder include: Can we trap dark matter particles in a laboratory setting? If not, what methods can we employ to analyze their properties?

The solution lies in progressing from established knowledge. We suspect that dark matter behaves similarly to known matter, indicating we might utilize the same mathematical frameworks, like quantum field theory (QFT), to investigate it.


We are increasingly focusing on finding evidence of dark matter scatterings, not just impacts on targets.

Quantum field theory can seem complex, and indeed it is. However, a deep understanding is not mandatory to grasp its essence. It is potentially the most fundamental physical theory, harmonizing special relativity with quantum mechanics (excluding general relativity). It suggests that interactions at any point in the universe might give rise to particles due to respective fields.

Imagine a strawberry field. Strawberries grow in specific places due to certain characteristics of those space-time coordinates. These areas possess conditions suitable for strawberry flowers to flourish. The potential for strawberries exists throughout the field, yet only select areas yield blossoms. Similarly, QFT posits the existence of particles.

QFT is intricate, a realm where even experts invest years to cultivate understanding. Even when considering the application of QFT to dark matter to glean useful insights, a critical question arises: How can one formulate an equation for something with minimal known properties?

Sociologically, it’s fascinating to observe the varied responses from scientists. Over the past decade, a popular method for addressing what remains unknown has involved crafting “effective field theory” (EFT). EFT enables the formulation of generalized equations that can be adapted based on empirical observations.

EFT can also be designed with specific experimental frameworks in mind. A key strategy for unraveling dark matter mysteries involves conducting direct detection experiments. Through these efforts, we aspire to witness interactions between dark and visible matter that yield observable results in ground-based studies. Over the years, methods of direct detection have matured and diversified. Researchers are not only looking for signs of dark matter striking targets; they are increasingly seeking footprints of dark matter scattering from electrons. This shift requires an evolution of EFT to accommodate new experimental insights.

In a recent preprint, researchers Pierce Giffin, Benjamin Lillard, Pankaj Munbodh, and Tien-Tien Yu present an EFT aimed at better addressing these scattering interactions. This paper, which has not yet undergone peer review, captured my attention as a prime example of research that may not make headlines but represents essential progress. Science demands patience, and I trust our leaders will remain cognizant of that.

Chanda Prescod-Weinstein is an associate professor of physics and astronomy at the University of New Hampshire. She is the author of Turbulent Universe and upcoming books The Ends of Space and Time: Particles, Poetry, and the Boogie of Cosmic Dreams.

What I Am Reading
I just completed the captivating debut novel by Addie E. Sitchens: Dominion.

What I See
I recently caught up on the summer episodes of Emmerdale, and they were quite surprising!

What I Am Working On
My collaborators and I are exploring intriguing new research ideas related to dark matter scenarios.

Topic:

Source: www.newscientist.com

What is the reason behind science’s heavy reliance on mathematics?

The following is an excerpt from the Lost in Space-Time newsletter. Every month, we Give a keyboard to a physicist or mathematician and let them talk about some fascinating ideas from their corner of the universe. You can sign up for Lost in Space-Time for free here.

“Science is written in the language of mathematics,” Galileo declared in 1623. And over the past few centuries, science has become increasingly mathematical. Mathematics now seems to have complete supremacy, especially in the fields of quantum physics and relativity. Modern physics education seems to include deriving theories such as…

Source: www.newscientist.com

The Role of Worms in Unraveling One of Science’s Greatest Mysteries: Challenging Established Models

Using the nematode C. elegans, scientists have made significant headway in understanding brain function. New insights into neural communication are provided by research that uses optogenetics and connectomics to challenge traditional models and deepen the understanding of complex neural networks. The transmission of information between neurons is currently being investigated, raising the question of whether we truly understand how the brain works.

There have been great strides in understanding the complex workings of the brain in recent decades, providing extensive knowledge about cellular neurobiology and neural networks. However, many important questions are still unanswered, leaving the brain as a profound and intriguing mystery. A team of neuroscientists and physicists at Princeton University has made groundbreaking strides in this field of research, particularly through their work with the C. elegans nematode. The study, recently published in Nature, is aimed at understanding how ensembles of neurons process information and generate behavior.

The C. elegans nematode is especially suitable for laboratory experimentation due to its simplicity and the fact that its brain wiring has been completely “mapped.” Furthermore, the worm’s transparency and light-sensitive tissues present the opportunity to use innovative techniques such as optogenetics. Through these techniques, the researchers were able to carefully observe and measure the flow of signals through the worm’s brain, gaining new insights that challenge established models of neural behavior.

The study provides a comprehensive explanation of how signals flow through the C. elegans brain and challenges established mathematical models derived from connectome maps. The researchers found that many of their empirical observations contradicted the predictions based on these models, leading them to identify “invisible molecular details” and “radio signals” as important components of neural behavior. Ultimately, this work aims to develop better models for understanding the complexity of the brain as a system.

The research was supported primarily by a National Institutes of Health Newcomer Award, a National Science Foundation CAREER Award, and the Simons Foundation. These findings have broad implications, particularly for understanding biological processes and developing new technologies.

Source: scitechdaily.com