Worms Unite to Create Tentacles and Explore New Areas

https://www.youtube.com/watch?v=7jlpeimmgyw

What should a tiny millimeter worm do when food is scarce? The solution lies in teaming up with countless companions to form tentacle-like structures that can bridge gaps to nearby objects or capture larger prey to aid in their journey.

Researchers examining nematode worms in laboratory settings have long observed their ability to construct “towers,” yet these phenomena lacked thorough exploration, states Serenadine from the Max Planck Institute for Animal Behavior in Germany. Therefore, she and her team aimed to investigate this further.

The research focused on the Caenorhabditis elegans worm species. In their experiments, when food was inadequate, and given a structure to assemble, a significant number of worms tended to create towers. For these studies, they utilized toothbrush bristles as a base.

While worms occasionally formed towers without any physical support, these structures were typically under 5 mm tall and only lasted about a minute. In contrast, when built upon the bristles, the towers reached heights of 11 mm and could endure for up to half a day.

In other nematode species, reports indicate towers can grow as tall as 50 mm. “They can expand significantly,” notes Din.

Although the base of the tower remains steady, the upper portion can extend well beyond the support and exhibit movement similar to tentacles. This allows the towers to reach out to nearby surfaces, forming bridges that enable the worms to traverse much wider gaps than individual organisms could manage.

“Tower” of nematode worms on rotten apples

Perez et al. Current Biology (2025)

The towers are capable of gripping objects that come into contact with them, such as fruit fly legs, effectively hitching a ride for the worms. This allows them to travel further without exerting their own energy.

While it’s known that individual nematodes can latch onto insects for transportation, the idea that an entire tower could do the same was previously unverified. “That’s a feature we expect to observe,” says Ding.

Utilizing a digital microscope, the researchers documented the tower’s formation on a decaying apple in an orchard adjacent to their laboratory.

Worm towers are exclusively formed by a single species, despite the presence of various species around them. They can consist of worms at any stage of their life cycle, even if the team discovers them during the process. Previously, it was believed that only “Dawer” worms, which are in their hard larval stage during stressful conditions, could create these towers.

There are other similarly crude forms of aggregation. For instance, slime molds, which are single-celled organisms like amoebas, can group together to form larger masses that move in search of nourishment.

Topic:

Source: www.newscientist.com

The Role of Worms in Unraveling One of Science’s Greatest Mysteries: Challenging Established Models

Using the nematode C. elegans, scientists have made significant headway in understanding brain function. New insights into neural communication are provided by research that uses optogenetics and connectomics to challenge traditional models and deepen the understanding of complex neural networks. The transmission of information between neurons is currently being investigated, raising the question of whether we truly understand how the brain works.

There have been great strides in understanding the complex workings of the brain in recent decades, providing extensive knowledge about cellular neurobiology and neural networks. However, many important questions are still unanswered, leaving the brain as a profound and intriguing mystery. A team of neuroscientists and physicists at Princeton University has made groundbreaking strides in this field of research, particularly through their work with the C. elegans nematode. The study, recently published in Nature, is aimed at understanding how ensembles of neurons process information and generate behavior.

The C. elegans nematode is especially suitable for laboratory experimentation due to its simplicity and the fact that its brain wiring has been completely “mapped.” Furthermore, the worm’s transparency and light-sensitive tissues present the opportunity to use innovative techniques such as optogenetics. Through these techniques, the researchers were able to carefully observe and measure the flow of signals through the worm’s brain, gaining new insights that challenge established models of neural behavior.

The study provides a comprehensive explanation of how signals flow through the C. elegans brain and challenges established mathematical models derived from connectome maps. The researchers found that many of their empirical observations contradicted the predictions based on these models, leading them to identify “invisible molecular details” and “radio signals” as important components of neural behavior. Ultimately, this work aims to develop better models for understanding the complexity of the brain as a system.

The research was supported primarily by a National Institutes of Health Newcomer Award, a National Science Foundation CAREER Award, and the Simons Foundation. These findings have broad implications, particularly for understanding biological processes and developing new technologies.

Source: scitechdaily.com