Revolutionary New Sensor Transforms Optical Imaging Technology

Revolutionizing Imaging Technology: UConn Scientists Create Lens-Free Sensor with Submicron 3D Resolution



Illustration of MASI’s working principle. Image credit: Wang et al., doi: 10.1038/s41467-025-65661-8.

“This technological breakthrough addresses a longstanding issue in imaging,” states Professor Guoan Zheng, the lead author from the University of Connecticut.

“Synthetic aperture imaging leverages the combination of multiple isolated sensors to mimic a larger imaging aperture.”

This technique works effectively in radio astronomy due to the longer wavelengths of radio waves, which facilitate precise sensor synchronization.

However, at visible wavelengths, achieving this synchronization is physically challenging due to the significantly smaller scales involved.

The Multiscale Aperture Synthesis Imager (MASI) turns this challenge on its head.

Instead of requiring multiple sensors to operate in perfect synchronization, MASI utilizes each sensor to independently measure light, employing computational algorithms to synchronize these measurements.

“It’s akin to multiple photographers capturing the same scene as raw light measurements, which software then stitches together into a single ultra-high-resolution image,” explains Professor Zheng.

This innovative computational phase-locking method removes the dependency on strict interferometric setups that previously limited the use of optical synthetic aperture systems.

MASI diverges from conventional optical imaging through two key innovations.

Firstly, instead of using a lens to focus light onto a sensor, MASI employs an array of coded sensors positioned on a diffractive surface, capturing raw diffraction patterns—the way light waves disperse after encountering an object.

These measurements contain valuable amplitude and phase information, which are decoded using advanced computational algorithms.

After reconstructing the complex wavefront from each sensor, the system digitally adjusts the wavefront and numerically propagates it back to the object’s surface.

A novel computational phase synchronization technique iteratively fine-tunes the relative phase offsets to enhance overall coherence and energy during the joint reconstruction process.

This key innovation enables MASI to surpass diffraction limits and constraints posed by traditional optical systems by optimizing the combined wavefront in the software, negating the need for physical sensor alignment.

As a result, MASI achieves a larger virtual synthetic aperture than any individual sensor, delivering submicron resolution and a wide field of view, all without the use of lenses.

Unlike traditional lenses for microscopes, cameras, and telescopes, which require designers to make trade-offs, MASI enables higher resolution without the limitations of lens proximity.

MASI captures diffraction patterns from several centimeters away, reconstructing images with unparalleled submicron resolution. This innovation is akin to inspecting the intricate ridges of a human hair from a distance, rather than needing to hold it inches away.

“The potential applications of MASI are vast, ranging from forensics and medical diagnostics to industrial testing and remote sensing,” highlights Professor Zheng.

“Moreover, the scalability is extraordinary. Unlike traditional optical systems, which become increasingly complex, our framework scales linearly, opening doors to large arrays for applications we have yet to conceptualize.”

For more details, refer to the team’s published paper in Nature Communications.

_____

R. One et al. 2025. Multiscale aperture synthetic imager. Nat Commun 16, 10582; doi: 10.1038/s41467-025-65661-8

Source: www.sci.news

Newly Discovered DNA Methylation Sensor Uncovered by Scientists

DNA methylation is a widely observed epigenetic modification in biological systems that serves diverse functions in transcriptional regulation, transposable element silencing, and innate immunity.



A nucleosome composed of DNA (grey) and histones (blue) with a single hemimethylated cytosine bound by CDCA7 (purple). Image courtesy of Kyohei Arita and Kazuaki Ushi.

DNA methylation is the process by which methyl groups are added to cytosine bases in DNA molecules and is the primary way in which DNA is epigenetically marked.

Epigenetic modifications act as on-off switches that regulate gene expression, helping to generate diverse cell types without altering the underlying DNA sequence – a way for the body to ensure that brain-related genes aren’t turned on in heart cells, for example.

Therefore, maintenance of DNA methylation patterns is crucial to ensure correct and consistent function of each cell type.

However, this is not easy: DNA methylation patterns can change over time, and this has been linked to a range of diseases.

One is a rare genetic disorder called immunodeficiency, centromere instability and facial anomalies (ICF) syndrome, whose symptoms include recurrent respiratory infections, facial abnormalities, and poor growth and cognitive function.

Although it was known that mutations in the CDCA7 gene cause ICF syndrome, little was known about the molecular function of this gene.

In a new study, Professor Hironori Funabiki of Rockefeller University and his colleagues have identified unique functional features of CDCA7 that ensure the correct inheritance of DNA methylation.

The researchers discovered that CDCA7 senses hemimethylation in eukaryotes, an important finding because hemimethylation sensing was long thought to be carried out exclusively by a protein called UHRF1.

“This is a really surprising discovery,” said Isabel Wassing, a scientist at Rockefeller University.

“The discovery that CDCA7 also acts as a sensor explains why mutations in it lead to diseases like ICF syndrome and fills a major gap in the field of epigenetics.”

“But it also raised new questions, such as why do cells need two different hemimethylation sensors?”

“We discovered that the CDCA7 gene, known to be the causative gene for ICF syndrome, specifically binds to hemimethylated DNA on nucleosomes and promotes DNA methylation by controlling the ubiquitination of histone H3,” said Atsuya Nishiyama, a research scientist at the University of Tokyo.

Scientists know that chromatin limits access for many enzymes and DNA-binding proteins, including those needed to introduce methylation into DNA.

Previous research by Professor Funabiki’s team has shown that CDCA7 forms a complex with a protein encoded by the HELLS gene, mutations of which also cause ICF syndrome.

HELLS is a so-called nucleosome remodeller that can temporarily release DNA molecules from nucleosomes.

“We reasoned that the CDCA7-HELLS complex is important in helping cells overcome the barrier of condensed heterochromatin and make DNA molecules available for methylation deposition,” Professor Funabiki said.

“But there are many nucleosome remodelers that can expose DNA molecules in this way.”

“It remained a mystery to us why CDCA7-HELLS is the only nucleosome-remodeling complex directly linked to DNA methylation maintenance.”

“By showing that CDCA7 specifically recruits HELLS to hemimethylated DNA, we finally have an explanation.”

In this model, CDCA7 recognizes hemimethylated DNA in chromatin and recruits HELLS to the site, which acts as a nucleosome remodeler to slide nucleosomes and reveal the hemimethylated site to UHRF1.

The takeover of hemimethylation sensing indicates that CDCA7 is better at detecting hemimethylation in dense heterochromatin than UHRF1 and also explains why cells require two distinct sensors.

“For these sensors to detect hemimethylation, they need to bind directly and selectively to hemimethylated DNA substrates,” Dr. Wassing said.

“CDCA7 appears to perform its function independently while DNA is wrapped around the nucleosome. Without CDCA7, UHRF1 cannot recognize the hemimethylation signals within the nucleosome particle.”

“Our findings suggest that CDCA7 and HELLS promote DNA methylation through a mechanism distinct from de novo DNA methylation, and this is strengthened by our demonstration that the CDCA7 HMZF domain specifically recognizes hemimethylated CpGs, which are substrates for the maintenance DNA methyltransferase DNMT1,” said Dr. Nishiyama.

“ICF disease-associated mutations in the CDCA7 gene abolish hemimethylated DNA binding, supporting the functional importance of hemimethylation detection by CDCA7.”

This new understanding may help elucidate the underlying mechanisms of diseases resulting from methylation dysfunction.

In the future, the functions of hemimethylation sensors beyond maintaining DNA methylation will be explored.

“Because some chromosomal regions are known to maintain a hemimethylated state, their recognition by CDCA7 may play a broader role in gene regulation and chromosomal organization, which is a very intriguing possibility,” says Professor Funabiki.

“Our research lays the foundation for the development of new DNA methylation inhibitors and therapeutic drugs for ICF syndrome,” said Dr. Nishiyama.

“Therapies that artificially control CDCA7-dependent DNA methylation may be useful for preventing cancer and aging and extending healthy lifespan.”

of Survey results Featured in this month’s journal Scientific advances.

_____

Isabel E. Wassing others2024. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. Scientific advances 10 (34); doi: 10.1126/sciadv.adp5753

This article is based on a press release from Rockefeller University.

Source: www.sci.news

Non-surgical tiny brain sensor dissolves within weeks of implantation

Hydrogel-made brain sensor is small enough to be injected with a needle

Hanchuan Tang and Jianfeng Zang

Tiny sensors can be injected into the skull with a needle to monitor brain health until they dissolve within a few weeks. These sensors have been tested in animals, and in the future, they may enable minimally invasive, implantable sensors in the human body that can monitor traumatic brain injury and neurological disorders such as epilepsy.

“To my knowledge, this is the first wireless sensor that can monitor conditions inside the body without the need for surgery,” he said. Jules Magda The researcher is from the University of Utah, but was not involved in the study.

The sensor is a soft hydrogel cube about 2 millimeters wide, about the width of a grain of rice. Jiangfeng Zhan Professors from China’s Huazhong University of Science and Technology created structured “metagel” sensors by creating precisely spaced air columns throughout a hydrogel. When an external ultrasound source is aimed at the sensor, the channels guide the ultrasound waves. The shape of the sensor changes subtly in response to changing conditions in the brain, such as pressure or temperature, which can be seen in the reflected ultrasound.

“No wiring or electronics are required,” Zhang says. “It’s as if the metagel acts as a tiny acoustic mirror that changes its reflection depending on the environment.”

Zhang and his colleagues showed that when metagel sensors were injected into the brains of rats and pigs, they could measure pressure, temperature, pH levels, and flow rates in nearby blood vessels. They obtained results comparable to wired probes traditionally used to monitor brain health. Their experiments also found that metagel broke down into relatively harmless components, such as water and carbon dioxide, within four to five weeks.

Injecting the sensor into the brain requires a thick needle, which could still cause pain or discomfort, Magda said, and he noted that researchers also need to make sure the dissolved metagel is non-toxic.

Zhang says that the rats in the study showed little swelling in brain tissue or buildup of immune cells after the sensors were implanted and degraded, but he says that longer-term testing in larger animals is still needed to show that the metagel works reliably and safely before clinical trials in humans can begin.

topic:

  • brain/
  • medical technology

Source: www.newscientist.com