Physicists discover proof of asymmetry between matter and antimatter in decay of baryons and beauty hadrons

The standard model of particle physics predicts an asymmetry between matter and antimatter known as charge parity (CP) violation. However, the size of this asymmetry in the Standard Model is not large enough to explain the disequilibrium, and so far the asymmetry has only been observed in certain decays of particles called mesons. In two new studies, LHCb collaboration CERN’s Large Hadron Collider (LHC) has discovered evidence of CP violation in baryon decay and beauty hadron decay into charmonium particles, shedding light on these two pieces of the matter-antimatter puzzle.

Exterior view of the LHCb detector. Image credit: CERN.

Experiments involving LHCb have previously searched for baryon CP violation by looking for differences in the way matter and antimatter baryons decay into other particles.

However, these investigations have so far been essentially empty-handed.

One LHCb study provided evidence for a process in the specific collapse of the bottom lambda baryon, but subsequent studies analyzing larger samples of such collapses did not increase that evidence.

in first new studyLHCb physicists scrutinized proton-proton collision data obtained during the first and second runs of the LHC and discovered various decay modes of the bottom lambda baryon, including decay into a lambda baryon and two kaons. You have searched for

We then investigated the CP violation in each decay mode, essentially by counting the number of decays of the bottom lambdabaryon and its antimatter partner and taking the difference between the two.

In the case of the lambda baryon and its decay into two kaons, this difference showed evidence of a CP violation with a significance of 3.2 standard deviations.

in second studythe LHCb team focused on the decay of a beautiful charged meson into J/psi and a charged pion.

J/psi is a charmmonium particle, a meson consisting of a charm quark and a charm antiquark.

We performed an analysis similar to the lower lambda baryon study, also using data from the first and second runs of the LHC, and found evidence for CP violation in this decay mode of charged meons. Again, the significance is 3.2 standard. Deviation.

This finding represents evidence of CP violation in the decay of beauty hadrons to charmonium particles.

“Our study represents an important step toward establishing whether CP violations are present in these types of collapses,” the authors state.

“Data from the high-luminosity LHC, with its third experiment and planned collider upgrades, will shed further light on these and other parts of the matter-antimatter puzzle. .”

_____

LHCb collaboration. 2024. Study of Λ0b and Ξ0b decay to Λh+h'- and evidence of CP violation in Λ0b→ΛK+K- decay. arXiv: 2411.15441

LHCb collaboration. 2024. First evidence of direct CP violation to charmonium decay in cosmetology. arXiv: 2411.12178

Source: www.sci.news

Upcoming Antimatter Science to Provide Insights into the Existence of All Living Beings

After years of extremely precise experiments, a group of researchers at CERN finally succeeded in creating and carefully capturing a sample of antihydrogen (the antimatter version of hydrogen) in September of this year. The sample was held in magnetic confinement to prevent it from hitting the walls of the container and quickly disappearing. The ALPHA-g experiment aimed to answer how antimatter behaves and revealed that it actually falls the same way that regular matter does.

Antimatter is known for generating high-energy radiation when it encounters normal matter, but contrary to popular belief, it has been shown to be less extreme than expected. For example, positrons, known as antielectrons, are exactly the same as electrons but with opposite charges and “parity.” Physicists had not experimentally confirmed that antimatter behaves the same way as regular matter until the ALPHA-g experiment.

Despite its violent tendencies, antimatter’s nature has raised questions about the definition and properties of matter in physics. The debate revolves around the conception of matter, where rest mass is the simplest definition. Matter encompasses various substances, atoms, molecules, protons, neutrons, electrons, quarks, and neutrinos. However, what constitutes matter becomes blurry when considering massless elementary particles and the contribution of energy to the mass of an object.

Exotic materials, like dark matter and negative mass materials, add complexity to the matter debate. The fact that matter and antimatter exist in unequal amounts, although not fully explained, has led to the formation of stars, galaxies, and planets. Antimatter experiments like ALPHA-g offer insight into matter’s nature and the existence of the universe.

Source: www.sciencefocus.com