Scientists Uncover 1.4 Billion-Year-Old Salt Crystals with Ancient Bubbles

In a groundbreaking study, researchers uncovered ancient gases and fluids trapped within 1.4 billion-year-old rock salt crystals in northern Ontario, Canada. Their analysis reveals that oxygen and carbon dioxide concentrations during the Mesoproterozoic Era (1.8 billion to 800 million years ago) were suppressed to just 3.7% of current levels, while carbon dioxide was found to be ten times pre-industrial levels. These findings indicate a period of climatic stability, suggesting atmospheric oxygen levels temporarily exceeded the needs of early animals long before their emergence.

Examples of primary halite, mixed halite, and secondary halite rock inclusion aggregates. Image credit: Park et al., doi: 10.1073/pnas.2513030122.

Scientists have long recognized that liquid inclusions within rock salt crystals preserve samples of Earth’s primordial atmosphere.

However, accurately measuring these inclusions has presented significant challenges. These inclusions encompass both air bubbles and saline water, with gases like oxygen and carbon dioxide interacting differently in liquids compared to air.

“It’s astonishing to crack open a sample of air that is over a billion years older than the dinosaurs,” said Justin Park, a graduate student at Rensselaer Polytechnic Institute.

“Our carbon dioxide measurements are unprecedented,” stated Morgan Schaller, a professor at Rensselaer Polytechnic Institute.

“For the first time, we can trace this era of Earth’s history with remarkable precision. These are authentic samples of ancient air.”

Measurements indicate that Mesoproterozoic atmospheric oxygen levels sat at 3.7%, mirroring today’s levels. This high oxygen concentration was sufficient to support the existence of complex multicellular life, which would not arise for hundreds of millions of years.

Conversely, carbon dioxide was found to be ten times more abundant than present levels, effectively counterbalancing the “weak young sun” and fostering the climate conditions seen today.

One pivotal question arises: if oxygen levels were adequate for animal life, why did evolution take so long?

“This sample represents a snapshot in geological time,” Park explained.

“It may reflect a brief oxygenation event during this lengthy period, humorously dubbed the ‘billion boring years.'”

“This era in Earth’s history was marked by low oxygen levels, geological stability, and minimal evolutionary change.”

“Despite its moniker, direct observational data from this time is crucial for understanding the emergence of complex life and the evolution of our atmosphere.”

Prior indirect estimates suggested low carbon dioxide levels for this epoch, contradicting evidence of a lack of significant glaciation during the Mesoproterozoic.

The team’s direct measurements of elevated carbon dioxide, alongside temperature estimates from the salt, imply that Mesoproterozoic climate conditions were milder and more akin to today’s climate than previously assumed.

“Algae began to flourish during this period, continuing to play a vital role in global oxygen production today,” Professor Schaller remarked.

“The relatively elevated oxygen levels may directly result from the increasing prevalence and complexity of algae.”

“The insights we gained could represent an exciting moment in what is otherwise regarded as a billion years of monotony.”

The team’s research paper has been published today in the Proceedings of the National Academy of Sciences.

_____

Justin G. Park et al.. 2025. Bringing the Boring Billion to Life: Direct constraints from 1.4 Ga fluid inclusions reveal a favorable climate and oxygen-rich atmosphere. PNAS 122 (52): e2513030122; doi: 10.1073/pnas.2513030122

Source: www.sci.news

The Expansive Bubbles Surrounding the Dying Star Defy Comprehension

Gas bubbles surrounding red supergiant DFK 52

Alma/Mark Siebert et al. 2025

A dying star is shedding a massive sphere of dust and gas approximately half the size of our solar system. Astronomers are puzzled by this phenomenon as there’s no known process capable of producing such an extensive amount of material from a single star.

Red supergiants are the universe’s largest stars, representing the final stages of a massive star that has exhausted most of its fuel before it eventually goes supernova. During this brief phase, the star expands rapidly, releasing copious amounts of gas and dust and forming bubbles around it.

Mark Siebert from the Chalmers Institute of Technology in Sweden and his colleagues found that the red supergiant star DFK 52 possesses the largest known environment for such celestial bodies, creating a bubble 50,000 times wider than the distance between Earth and the Sun. Curiously, these stars are relatively dim, suggesting they have less energy than what would typically be needed to generate such a vast debris field. “I can’t ascertain how I can disperse so much material in that timeframe,” Siebert remarks.

Previously, DFK 52 had been observed by various telescopes, allowing astronomers to conclude that it expelled a normal quantity of gas. However, when Siebert and his team used the Atacama Large Millimeter Array (ALMA) in Chile, they detected light at longer wavelengths from older, much cooler materials.

“It reveals an extensive environment around DFK 52 with a very complex geometry that’s not entirely understood yet,” Siebert explains. “We don’t grasp the precise structure, but we acknowledge its immense scale.”

Similar to the intricate flow of bubbles throughout the structure, Siebert and his team observed ring-like formations at the core of the overall sphere, expanding at approximately 30 kilometers per second. They estimate that this activity likely stemmed from a significant event that occurred around 4,000 years ago, potentially key to understanding how the star generated so much material.

Location of DFK 52 observed by the Spitzer Space Telescope

NASA/JPL-CALTECH/IPAC

A potential explanation for the extensive environment is that these stars may have briefly increased in brightness and then dramatically faded, although red supergiants are not typically known for such fluctuations, according to Siebert. Alternatively, another star may be orbiting a larger star, stripping material from DFK 52, but this would likely result in a more symmetrical bubble, Siebert asserts. “It is evident that some additional energy sources must contribute to this phenomenon, but we remain uncertain about what they are,” he comments.

“The explosion won’t alter the star’s overall evolution, but it may significantly influence the future appearances of supernovas,” says Emma Beads from John Moores University, Liverpool, UK. “This is an intriguing development that enhances our understanding of unusual supernovae.”

World Capital of Astronomy: Chile

Discover the astronomical wonders of Chile. Visit some of the world’s most advanced observatories and experience the pristine night sky.

Topic:

Source: www.newscientist.com

Morse Code Messages Encased in Ice Bubbles

ICE can provide a method for long-term message storage in cold climates

Anton Petrus/Getty Images

Messages can be preserved in ice for millennia simply by altering the shape and positioning of the internal bubbles present.

Mengjie Song and his team at China’s Beijing University of Technology were exploring ice formation when they discovered that it influences the size and shape of bubbles encapsulated within. For instance, they found that freezing a layer of water between plastic sheets resulted in either oval or needle-shaped foam, depending on the freezing rate.

The researchers assigned specific bubble sizes, shapes, and positions to represent characters in Morse and binary code. By controlling the freezing rate of water, they created ice that conveyed messages through the embedded bubbles.

Transforming this ice image to grayscale revealed that white areas indicated the presence of bubbles, while black areas indicated the absence of them. This allowed computers to identify the size and location of bubbles for message decoding.

Currently, the amount of information that can be stored in conventional ice cubes is minimal with existing technology. However, Song suggests that by manipulating foam in materials like plastic, greater capacities could be achieved.

He mentions that beyond the novelty of reading messages embedded in ice cubes used in beverages, this research has diverse potential applications. “The strength of this study lies in its capability to sustain information over extended periods in frigid environments like the Arctic and Antarctic,” Song notes.

He envisions a future where bubbles could safely contain ozone for food preservation or act as carriers for slow-release medications. He is particularly intrigued by how bubbles can inhibit ice formation on airplane wings and how this knowledge could inform behavior in lunar environments.

However, Qiang Tang from the University of Sydney is more skeptical about the practical implications of this research, asserting that significant information can be long-term stored on hard drives and paper.

He comments, “This represents a novel method for conveying messages, but from a security and encryption standpoint, I see little value in it—unless, of course, a polar bear has something to communicate,” he adds.

Topic:

Source: www.newscientist.com