Images of Mars and Deimos captured by Hera from a moon

On March 12, 2025, Spatula – ESA’s first space safety mission – reached Deimos, coming within 5,000 km of the surface of Mars and 1,000 km from Deimos. During flybys, the spacecraft deployed scientific payloads for studying Earth and the Moon. Activating the instruments onboard Hera, scientists were able to visualize the surface of Mars and the features of Deimos.

Mars appears bright blue in this near-infrared image of the Hyperscout H Hyperspectral Imager, which was acquired on the Mission’s March 12th Gravity Assisted Flyby. The spacecraft was about 1,000 km from Deimos, 12.4 km in diameter when this image was acquired. In the background, you can observe various Mars features. At the top of the image is the bright Terra Sabaaa area near the equator of Mars, which is outlined in a dark area, with the huygen crater at a distance of 450 km to the left of the Terra Aaa at Sabaaa and the 460 km diameter Shea Parelli Crater. To the bottom right of the Mars disc is one of the largest known impact craters in the solar system, 2,300 km in diameter and over 7 km deep. Image credit: ESA.

Launched on October 7th, 2024, Hera is now en route to visit Dimorphos. Dimorphos was the first asteroid to have its orbit altered by human intervention.

By gathering detailed data on this asteroid, which was affected by NASA’s DART spacecraft in 2022, Hera aims to advance asteroid deflection into a well-understood and potentially replicable technology.

Hera’s Flyby of Mars was a crucial step in the journey through Deep Space, meticulously planned by ESA’s Flight Dynamics team.

Approaching within 5,000 km of Mars, the planet’s gravity assisted in adjusting the spacecraft’s path towards its target.

Traveling at 9 km/s relative to Mars, Hera was able to capture images of Deimos from 1,000 km away, exploring the far side of the tiny moon opposite to the red planet.

“The mission analysis and flight dynamics team at ESOC in Germany did an exceptional job in planning the gravity assist,” said Caglayan Guerbuez, ESA’s Hera Spacecraft Operations Manager.

“In particular, they had to fine-tune the operations to bring Hera closer to Deimos, which added quite a bit of extra work for them!”

Three instruments onboard HERA were utilized during the flyby.

– The asteroid framing camera of the Spara, used for navigation and scientific purposes, captured images in visible light.

– HERA’s Hyperscout H Hyperspectral Imager observed in multiple colors beyond human perception, aiding in characterizing mineral compositions with its 25 visible and near-infrared spectral bands.

– HERA’s thermal infrared imager, provided by the Japan Aerospace Exploration Agency (JAXA), revealed physical properties such as roughness, particle size distribution, and porosity, mapping surface temperatures in mid-red wavelengths.

“These instruments were previously tested before leaving Earth, but this is the first time they were utilized on a distant moon like Deimos where knowledge is limited,” said the Research Director of CNRS, Observatoire de la Côte d’Azur.

“Upon reaching Deimos, one of the HERA instruments remained idle as the others were in use. This is due to the limitation of the Cubesats, which are only activated at slower speeds when at a considerable distance from the target,” added the Research Director.

Source: www.sci.news

Hera Asteroid Mission Captures Breathtaking Image of Deimos, Moon of Mars

Mars appears bright blue in this near-infrared image taken by Hera's spacecraft. The month's deimos is a dark mark towards the center of the image

ESA

Space exploration mission to study asteroids that NASA deliberately crashed a spacecraft three years ago takes stunning bonus images of Mars and its moon Deimos is on the way to his final destination.

NASA's 2022 Double Planet Redirect Test (DART) was an attempt to show that bodies on a collision course with the planet could be deliberately redirected to avoid catastrophic effects. Observations from Earth showed that NASA successfully alters the orbit of the asteroid by crushing the 610-kilogram ship into distant asteroid shaped leaves at 6.6 km/sec. Dimorphos did not present any risk to the Earth, and simply acted as a subject.

Hera is a subsequent European Space Agency mission designed to explore the effects of crashes in detail. The craft is the size of a small car weighing 1081 kilograms when fully fueled. It was released on October 7, 2024 from Cape Canaveral, Florida, aboard the SpaceX Falcon 9 Rocket, and on March 12, 2025 I made a flyby to Mars on my way to the asteroid.

Deimos looks dark surrounded by Mars

ESA

Hera came close to 5,000 kilometers to the surface of Mars, received a gravity boost and cast it at Dimorphos. The operation reduced travel time by months and saved fuel.

It was very close to Mars, but I was able to turn on the trio of sensors to take detailed photos of some of the planets. Demos in the same frame. We captured images, infrared cameras and hyperspectral imagers that can sense different colors beyond the limits of the human eye using a 1020 x 1020 pixel resolution.

Hera moved at 9 km/sec compared to Mars, allowing him to image Deimos, a distance of just 1000 kilometers, ranging from 12.4 kilometers long. You can also photograph the side of the moon, which is attractively trapped from Mars, but that's not very common.

Deimos shines much brighter than Mars in this shot taken by Hera's thermal infrared imager

ESA/JAXA

The first concept behind the Hera mission was that it existed when Dart collided with Dimorphos, but delays in funding made it impossible. It will arrive a few years after the impact.

The mission also features two miniature satellites, called Juventus and Milani, or Cubesat. Rather than rotating the traits, these will fly before them and make a drastic pass at smaller, risky distances to collect data. Both are expected to look better if they eventually land on an asteroid and do everything they can in the distance.

https://www.youtube.com/watch?v=hu31-crtr9s

topic:

Source: www.newscientist.com