Earth and the Solar System Could Have Formed from Exploding Nearby Stars

SNR 0519, the remnants of a supernova that erupted around 600 years ago

Claude Coenen/ESA/Hubble & NASA

Our planet may owe some of its characteristics to a neighboring star that met its end as a supernova during the formation period of the solar system. This notion of a supernova bubble enveloping the sun and inundating it with cosmic rays might be a common phenomenon across the galaxy, implying that there could be many more Earth-like planets than we ever imagined.

Thanks to ancient data, we understand from a meteorite sample that the early solar system was rich in radioactive materials that generated significant heat and quickly decayed. The heat produced by these elements was crucial for releasing substantial amounts of water from the colliding space rocks and comets that coalesced to form Earth, ensuring there was enough water for life to eventually thrive.

However, the origin of these elements remains a mystery. While many are commonly produced in supernovae, simulations of nearby supernovae have faced challenges in replicating the exact ratios of radioactive elements observed in meteorite specimens from the early Solar System. A significant issue is that these explosive events were incredibly forceful and might have obliterated the delicate early solar system before planetary formation could take place.

Recently, Ryo Sawada and fellow researchers at the University of Tokyo have discovered that if a supernova occurs at an adequate distance, it could supply Earth with the necessary radioactive components without interfering with the planet-forming process.

In their theoretical framework, a supernova located approximately three light-years from our solar system could initiate a two-step process to generate the essential radioactive elements. Certain radioactive substances, like aluminum and manganese, are directly created during supernova explosions and might reach the solar system propelled by shock waves from the explosion.

Subsequently, the high-energy particles known as cosmic rays released by the supernova travel along these shock waves, colliding with other atoms in the gaseous, dusty, and rocky disk still in its formative phase, birthing the remaining radioactive elements such as beryllium and calcium. “We realized that prior models of solar system formation primarily concentrated on the injection of matter, neglecting the role of high-energy particles,” stated Sawada. “We contemplated, ‘What if our nascent solar system was simply engulfed in this particle bath?'”

Due to the occurrence of this process in more distant supernovae than previously explored, Sawada and his team estimate that between 10 and 50 percent of Sun-like stars and planetary systems might have been enriched with radioactive elements in this manner, leading to the formation of water-abundant planets that resemble Earth. Earlier theories posited that the proximity of the supernova would have made such an event exceedingly rare, akin to “winning the lottery,” as Sawada described. The fact that the supernova is further positioned indicates that “Earth’s creation is probably not an unusual occurrence, but a widespread phenomenon that transpires throughout the galaxy,” he adds.

“This is exceedingly clever because it strikes a harmonious balance between destruction and creation,” remarks Cosimo Insera from Cardiff University in the UK. “The right elements and the correct distance are essential.”

If this theory holds true, Inserra mentioned that upcoming telescopes like NASA’s Habitable World Observatory could significantly aid in the search for Earth-like planets by identifying remnants of ancient supernovae and locating systems that were within proximity to supernovae during their formation stages.

Scientific Progress DOI: 10.1126/sciadv.adx7892

Topic:

Source: www.newscientist.com

Is Earth Protected from Nearby Exploding Stars? – Sciworthy

As a star exhausts its fuel, it succumbs to gravitational forces and collapses. When a star over eight times the mass of our sun collapses, it can result in a supernova, a tremendous explosion that releases more energy in just a few seconds than what the sun produces over 10 billion years.

During a supernova explosion, high-energy particles known as Cosmic Rays of Galaxy and a violent outpouring of electromagnetic waves, referred to as Gamma rays, are generated. These emissions are termed Ionizing radiation because they dislodge electrons from the molecules they encounter, resulting in ionization. This process can devastate everything from biomolecules like DNA to atmospheric particles like aerosol. Consequently, researchers believe that supernovae pose significant threats to nearby life forms.

While humans have not witnessed a supernova explosion close to Earth, our ancestors may have been less fortunate. A nearby supernova could eject radioactive elements encapsulated in interstellar dust grains, which can travel through the solar system and eventually reach Earth. Geologists have traced these grains in marine mud over the last 10 million years and estimate that a supernova has likely exploded within 100 parsecs of our planet in the last million years. The Earth is positioned about 8,000 parsecs from the center of the Milky Way, making these stellar explosions relatively close in cosmic terms.

Historically, scientists have speculated that nearby supernovae may have influenced animal diversity by contributing to mass extinction events over the past 500 million years. Some researchers propose that cosmic rays emitted from supernovae could potentially deplete the Earth’s ozone layer every hundred million years, exposing surface dwellers to harmful UV radiation. Others suggest that ionizing radiation can interact with aerosols to form clouds that block sunlight. However, scientists remain divided on the extent of ozone depletion, how severe a supernova’s impact could be, its effects on climate, and how catastrophic it might be for the biosphere.

Recently, researchers have revisited the potentially destructive impact of nearby supernovae using models that simulate interactions among planetary atmospheres, oceans, land, and biospheres. Earth system models employ atmospheric chemistry frameworks, such as EMAC, to capture complex processes previously overlooked, including air circulation and chemical reactions. Specifically, EMAC utilizes data from outdoor experiments conducted by CERN to calculate how ions interact with aerosol particles.

The research team modeled the Earth as it exists today, with 21% atmospheric oxygen, normal radiation levels, and an intact ozone layer. They simulated an explosion of ionizing radiation equivalent to a supernova 50 parsecs away, increasing the gamma rays in their model tenfold for a few seconds and boosting cosmic rays in the galaxy by a factor of ten per annum.

The team investigated the effects of ionizing radiation bursts on the ozone layer. Their findings confirmed that ionizing radiation strips electrons from atmospheric nitrogen and oxygen atoms, leading to the formation of highly reactive molecules known as radicals, which can destroy ozone. However, they discovered that certain reactions occurred at slower rates than anticipated, resulting in less ozone depletion than expected. They also found that ionizing radiation interacts with water vapor to produce hydroxyl radicals, which, when combined with nitrogen radicals, actually contribute to ozone formation.

Based on their findings, the team estimated that supernovae could potentially deplete up to 10% of Earth’s ozone layer. This level of ozone loss is comparable to the 6% depletion caused by human-made fluorocarbons and is far from lethal. They repeated the model to account for an Earth with just 2% atmospheric oxygen, simulating conditions around 500 million years ago when life transitioned to land. This modeling revealed repeated UV protection in the ocean, and they found that at this reduced oxygen concentration, only 10% to 25% of the ozone layer was lost.

The team then analyzed how radiation from the supernova influences cloud formation and climate. They calculated that ionizing radiation could increase the number of cloud-forming particles by about 10% to 20% globally. This alteration is quite similar in magnitude to recent anthropogenic warming and could cool the Earth by approximately 2.5 watts per square meter. While they acknowledged that these changes might disturb the environment, they believe it wouldn’t lead to sudden extinction.

The researchers concluded that radiation from nearby supernovae is unlikely to trigger mass extinction events on Earth. Since our early ancestors first emerged, the atmosphere has functioned as a protective barrier, safeguarding us from immediate harmful effects. Nevertheless, they cautioned that their model does not account for the risks associated with long-term exposure to elevated levels of ionizing radiation, which remains largely unexplored. They suggested that future research should seek safe methods to investigate the direct impacts of cosmic radiation on humans and animals.


Post view: 375

Source: sciworthy.com

The Rise of Lithium Ion Batteries: Understanding the Exploding Fire Hazard

A severe fire in a garage and home in south of Sydney may have been caused by a faulty lithium-ion battery in an electric scooter. Fire investigators discovered that this incident was part of a series involving lithium-ion batteries.

Another fire broke out at New Farm apartments in Brisbane city centre in early November, believed by authorities to be ignited by an electric scooter’s battery. In March, New South Wales experienced four battery-related fires in one day.

The New South Wales Fire and Rescue Service has identified lithium-ion batteries as the state’s fastest-growing fire hazard, responding to 272 battery-related fires last year. Fire authorities in Victoria and Queensland are responding to lithium-ion battery fires almost every day.

Lithium-ion batteries are widely used in various devices due to their fast charging, power density, and long battery life. Australia’s largest lithium-ion battery, the Victorian Big Battery, can power over one million homes for 30 minutes.


What are lithium-ion batteries used for?

Different types of lithium-ion batteries are used in various devices, and when operated correctly, they are considered safe.

Lithium-ion batteries power cell phones, computers, electric scooters, electric bicycles, and electric cars, providing quick energy delivery and long battery life.

Lithium-ion batteries can catch fire due to overheating and physical damage, reaching high temperatures and producing toxic gases.


Why do lithium-ion batteries catch fire?

Lithium-ion batteries contain lithium ions in an electrolyte, and charging them too quickly can cause thermal runaway, leading to a rise in temperature and potential explosion.

Battery quality matters, as physical damage, defects, and overcharging can contribute to battery fires. It is essential to use approved chargers and follow manufacturer guidelines.

To prevent battery fires, avoid overcharging, charge batteries on hard surfaces, and recycle old batteries properly to reduce the risk of fire incidents.

Source: www.theguardian.com