Ultrasound Could Enhance Stroke Survival by Clearing Brain Debris

Ultrasound can penetrate the skull and reach the brain

Shutterstock/peterschreiber.media

Recent research suggests that pulsed ultrasound waves directed at the brain may enhance survival rates following a specific stroke type by promoting the removal of inflammatory dead blood cells, based on findings from a study involving mice. This technique, which boosts lymphatic drainage efficiency, could also have applications for treating Alzheimer’s disease, with clinical trials anticipated to commence next year.

Hemorrhagic stroke, constitutes around 15% of all strokes and occurs when a blood vessel in the brain bursts, leading to bleeding, disrupting oxygen supply to the brain, and causing cellular damage, which can result in motor and cognitive issues.

Treatments typically involve sealing the ruptured blood vessel with small metal clips and extracting dead red blood cells via a catheter or similar device. Neglecting this procedure can exacerbate inflammation and lead to further tissue damage. However, this method is highly invasive, posing risks of brain damage and infections, as noted by Larg Airan at Stanford University, California.

After an unexpected experience with prolonged ultrasound application during drug activation in mouse brains, Aylan considered whether pulsed ultrasound could be effective in removing the “debris” from the brain. “When I observed the drug’s effects, it appeared to spread throughout the brain, almost as if it were being ‘painted’ over,” he recounted.

To probe this idea, the research team simulated a hemorrhagic stroke by injecting mice with blood from their tails. For three consecutive days, they administered pulsed ultrasound to the skulls of half the mice for 10 minutes each day, while the others received no treatment.

Subsequently, all mice underwent a three-minute test in a water tank divided into four corners, with healthy mice typically turning in either direction 50% of the time. The team discovered that mice treated with ultrasound turned left 39% of the time, compared to 27% for the control group. Additionally, treated mice exhibited stronger grips on a metal bar than their untreated counterparts, indicating they suffered less brain damage, a conclusion that was later substantiated through brain slice analyses conducted post-euthanasia.

One week following the blood injection, around half of the control group mice perished, compared to only one-fifth of the ultrasound-treated group. A rapid increase in survival rates was noted, with an approximately 30 percentage point improvement achieved through just three 10-minute ultrasound treatments, according to Airan.

Further insights revealed that the ultrasound pulses triggered pressure-sensitive proteins in microglia, the brain’s immune cells, reducing their inflammation and enhancing their ability to clear dead red blood cells. Additionally, this technique improved the flow of cerebrospinal fluid, facilitating the removal of dead cells to lymph nodes in the neck, which are part of the lymphatic system responsible for eliminating metabolic waste.

While more investigations are necessary, this method might also have the potential to address various brain disorders. “If ultrasound can efficiently remove larger red blood cells from the brain, it stands to reason it could also eliminate smaller toxic proteins, such as the misfolded tau associated with Parkinson’s and Alzheimer’s diseases,” Aylan explained.

Experts are impressed with this promising research due to its non-invasive nature. Kathleen Caron from the University of North Carolina at Chapel Hill noted that the lymphatic systems in mice and humans show considerable similarities, indicating this approach could be applicable in human cases as well.

The use of ultrasonic irradiation is considered safe, and while research is ongoing to confirm these findings, Aylan is optimistic about the lack of unforeseen side effects from this treatment.

Ultimately, the research team aspires to test this technique on individuals suffering from hemorrhagic strokes that necessitate urgent intervention. They aim to gather additional data on its safety and efficacy for Alzheimer’s patients, with trials projected to begin next year, according to Aylan.

topic:

Source: www.newscientist.com

Ultrasound treatment activates sluggish sperm movement

Sperm that don't move fast enough have a hard time reaching the egg and can cause fertility problems.

Alexei Kotelnikov / Alamy

Laboratory research has revealed that applying ultrasound to immobile sperm causes it to move. If sperm does not move properly, it becomes difficult for them to reach the egg, which is a major cause of infertility. With further research, this technology could help improve the success rate of in vitro fertilization (IVF).

Previous research suggests that: High frequency ultrasound increases sperm motility. However, the study did not involve isolating the sperm to assess which individual cells would be beneficial, allowing doctors to find the best cells to use in fertility treatments.

In the latest research, Ali Vafaie The researchers, from Monash University in Melbourne, Australia, classified 50 semen samples into three groups (fast, slow, and stationary) according to sperm motility, based on guidelines for assessing swimming speed.

After separating individual sperm cells from semen samples, the researchers measured the motility of the cells before and after exposure to ultrasound waves with a power of 800 megawatts and a frequency of 40 megahertz.

After 20 seconds of ultrasound, 59 percent of the immobile sperm slowed down, and some started swimming rapidly. Changes in sperm motility peaked at an increase of 266%.

Overall, immotile sperm made up 36% of the samples at the start of the study, but this decreased to just 10% after treatment. It is unclear how long the increase in migration lasted.

Researchers believe that exposure to ultrasound improves dysfunction in sperm's mitochondria, the cells' powerhouses, contributing to increased motility.

This approach could increase the success rate of in vitro fertilization, which requires motile sperm for conception, and could avoid the need for multiple costly surgeries.

But first, Vafai says, the research group will need to test the effectiveness of the approach on sperm, particularly in people experiencing infertility due to reduced sperm mobility. Scientists also need to assess whether it is safe to create embryos from sperm exposed to ultrasound, he says.

topic:

Source: www.newscientist.com

The ultrasound patch developed by MIT accurately detects bladder fullness

MIT researchers have developed a wearable ultrasound patch that can non-invasively image internal organs, primarily focusing on bladder health. The device eliminates the need for an ultrasound operator or gel and could transform the monitoring of various organ functions and disease detection.

The wearable device is specifically designed to monitor the health of the bladder and kidneys and could be instrumental for early diagnosis of cancers deep within the body.

Designed in the form of a patch, the ultrasound monitor can capture images of organs inside the body without requiring an ultrasound operator or gel application. The patch can accurately image the bladder and determine its fullness, allowing patients with bladder or kidney problems to efficiently monitor the functionality of these organs.

Additionally, the wearable patch has the potential for use in monitoring other organs in the body by adjusting the ultrasound array’s position and signal frequency. This capability could enable the early detection of deep-seated cancers like ovarian cancer.

The researchers behind this groundbreaking technology are based at the Massachusetts Institute of Technology (MIT), and the study has been published in Nature Electronics. Their aim is to develop a series of devices that improve information sharing between clinicians and patients and ultimately shape the future of medical device design.

In an initial study, the wearable ultrasound patch was able to obtain bladder images comparable to traditional ultrasound probes. To advance the clinical application of this technology, the research team is working on a portable device that can be used to view the images.

The MIT team also has aspirations to develop an ultrasound device capable of imaging other deep-seated organs in the body, such as the pancreas, liver, and ovaries. This will involve designing new piezoelectric materials and conducting further research and clinical trials.

Funding for this research was provided by various organizations, including the National Science Foundation, 3M Non-Tenured Faculty Award, Texas Instruments Corporation, and the MIT Media Lab Consortium, among others.

Source: scitechdaily.com