Unlocking Molecule Creation: Why Click Chemistry is the Century’s Most Innovative Concept

Explore the latest science news and in-depth articles by expert journalists on developments in science, technology, health, and the environment.

Chemistry can often be a complex and slow process, typically involving intricate mixtures in round-bottomed flasks that require meticulous separation afterward. However, in 2001, K. Barry Sharpless and his team introduced a transformative concept known as click chemistry. This innovative approach revolutionizes the field, with a name coined by Sharpless’s wife, Janet Dueser, perfectly encapsulating its essence: a new set of rapid, clean, and reliable reactions.

Though the idea appears straightforward, its elegance lies in its simplicity. Sharpless, along with colleagues Hartmas C. Kolb and MG Finn, described their creation as “spring-loaded.” This concept hinges on applying these reactions to various starting materials, assembling them akin to Lego blocks, thereby enabling the swift construction of a vast array of novel and beneficial molecules. Sharpless’s primary focus? Pharmaceuticals.

The overarching principle guiding these reactions was to steer clear of forming carbon-carbon bonds, which was the norm among chemists at the time, and instead to create bonds between carbon and what are known as “heteroatoms,” primarily oxygen and nitrogen. The most recognized click reaction involves the fusion of two reactants to create a triazole, a cyclic structure of carbon and nitrogen atoms. This motif proves to be highly effective at binding to large biomolecules such as proteins, making it invaluable in drug development. Sharpless independently published this specific reaction concurrently with chemist Morten Meldal, who researched it at the University of Copenhagen. This reaction has since been instrumental, notably in the production of the anticonvulsant drug Rufinamide.

Chemists like Tom Brown from the University of Oxford describe this reaction as simple, highly specific, and versatile enough to work in almost any solvent. “I would say this was just a great idea,” he asserts.

Years later, chemist Carolyn Bertozzi and her team at Stanford University developed a click-type reaction that operates without toxic catalysts, enabling its application within living cells without risking cellular damage.

For chemist Alison Hulme at the University of Edinburgh, this research was pivotal in elevating click chemistry from a promising idea to a revolutionary advancement. It granted biologists the ability to assemble proteins and other biological components while labeling them with fluorescent tags for investigation. “It’s very straightforward and user-friendly,” Hulme explains. “We bridged small molecule chemistry to biologists without necessitating a chemistry degree.”

For their groundbreaking contributions, Bertozzi, Meldal, and Sharpless were awarded the 2022 Nobel Prize in Chemistry—an outcome that surprised no one.

Topics:

Source: www.newscientist.com

Scientists Develop a Second Novel Carbon Molecule

Researchers have stabilized ring-shaped carbon molecules by adding “bumpers” to protect the atoms.

Harry Anderson

An innovative variety of whole carbon molecules is currently under investigation at standard room temperature. This marks only the second instance of such research since the synthesis of the spherical buckyball 35 years ago. These advancements may lead to the development of materials that offer substantial efficiencies for emerging electronic and quantum technologies.

Carbon molecules composed of circulating rings can display unique chemical characteristics and, similar to buckyballs and carbon nanotubes, can conduct electricity in unexpected ways. Nonetheless, these rings are fragile and often disintegrate before researchers can analyze them.

“Cyclic carbons are fascinating molecules that we’ve been endeavoring to create for quite some time,” said Harry Anderson from Oxford University. Traditionally, it was essential to maintain a sufficient length for studying the molecules, but Anderson and his team have discovered a method to stabilize cyclic carbon at room temperature.

This process involves modifying the cyclic carbon structure. The researchers have achieved this with unprecedented molecular constructs—specifically, rings consisting of 48 carbon atoms known as cyclo[48]Carbon, or c48. They augmented the c48 by incorporating a “bumper” that prevents the 48 atoms from colliding with one another or with additional molecules.

“There are no unnecessary embellishments,” remarked Max Fonderius from Ulm University, Germany. “Simplicity possesses an exquisite elegance.”

A new configuration called Cyclo[48]carbon [4]Catenan remains stable for approximately two days, allowing researchers to investigate c48 for the first time. Interestingly, the molecule’s 48 carbons behaved as if they were arranged in infinite chains, a formation that enables charge transfer between atoms indefinitely.

This remarkable conduction ability suggests that cyclic carbon could be utilized in a variety of next-generation technologies, including transistors, solar cells, semiconductors, and quantum devices. Nonetheless, further inquiry is necessary to validate this potential.

Innovative techniques for stabilizing cyclic carbon may also inspire other scientists to explore exotic carbon molecules. “I believe there is likely a competitive race happening right now,” said von Delius. “Consider this elongated ring as a stepping stone toward the creation of an infinite chain.”

Von Delius further explained that a solitary chain of carbon molecules could prove to be even superior conductors than the rings like C48. “It’s truly remarkable, and it represents the next significant advancement,” he stated.

topic:

Source: www.newscientist.com

New molecule developed by researchers to combat antimicrobial resistance – a game-changing antibiotic breakthrough

Researchers at Maynooth University have used supramolecular chemistry to discover new molecules to fight drug-resistant bacteria. This new discovery suggests a potential new approach to antibiotic development and has important implications for public health.Credit: Ella Mar Studio

Researchers at Maynooth University have developed a new molecule designed to fight drug-resistant bacteria.

An international team including researchers from Maynooth University has developed a new molecule that has the potential to fight drug-resistant bacteria.

Antimicrobial resistance (AMR) is a phenomenon in which bacteria, viruses, fungi, and parasites evolve over time and become immune to drugs. This resistance makes infections more difficult to cure and increases the risk of prolonged illness and death. With predictions that traditional antibiotics will largely lose their effectiveness by 2050 due to rising AMR levels, finding new ways to eradicate bacteria has become a key scientific priority.

Supramolecular chemistry: the key to fighting AMR

The research leveraged the principles of supramolecular chemistry, a niche scientific field that studies interactions between molecules, to achieve the breakthrough. Most importantly, this study discovered a molecule that is efficient at killing bacteria, yet has very low toxicity to healthy human cells.

New research published in prestigious journal chemistry, in conjunction with World AMR Awareness Week, which will be held from November 18th to 24th. This global campaign, run by the World Health Organization, aims to raise awareness and understanding of AMR in the hope of reducing the emergence and spread of drug-resistant infections.

More than 1.2 million people, and likely millions more, died as a direct result of antibiotic-resistant infections in 2019, according to the most comprehensive estimate to date of the global impact of AMR. The research could pave the way for new approaches to tackling the problem, which kills more people each year than HIV/AIDS or malaria.

Luke Brennan, lead researcher in Maynooth University’s Department of Chemistry, said: “We are discovering new molecules and investigating how they bind to anions, negatively charged chemicals that are very important in the context of the biochemistry of life.” It’s laying a fundamental foundation that could help fight a variety of diseases, from cancer to cystic fibrosis.”

A “Trojan horse” approach to resistant bacteria

The study was based on the use of synthetic ion transporters, and the researchers found that the influx of salts (sodium and chloride ions) into bacteria can trigger a series of biochemical events that lead to bacterial cell death. was demonstrated for the first time. Strains of bacteria that are resistant to currently available antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA).

Study co-author Dr Robert Hermes from the Kathleen Lonsdale Institute for Human Health at Maynooth University said: “This study shows how our approach, a kind of ‘Trojan horse’ that causes salt influx into cells, can be used to effectively kill resistant bacteria. It eliminates bacteria in a way that counters known bacterial resistance methods.”

Bacteria work hard to maintain a stable concentration of ions within their cell membranes, and when this delicate balance is disrupted, normal cell function is wreaked havoc and the cell is no longer viable.

Elms continued, “These synthetic molecules bind to chloride ions, enveloping them in a ‘blanket of fat’ and making them easily soluble in bacterial membranes, taking the ions along with them and allowing them to function normally.” Disturbs the ion balance.” This study is a great example of fundamental knowledge of chemical fundamentals that has implications for an unmet need in human health research. ”

Professor Kevin Kavanagh, microbiologist in Maynooth University’s School of Biology, commented: This research is an example of chemists and biologists working together to pioneer the development of new antimicrobial agents with great promise.”

Such results pave the way for the potential development of anion transporters as viable alternatives to currently available antibiotics, which is urgently needed as the problem of AMR continues to grow. This is what has been done.

Reference: “Strong antimicrobial effects induced by disruption of chlorine homeostasis” Luke E. Brennan, Lokesh K. Kumawat, Magdalena E. Piatek, Airlie J. Kinross, Daniel A. McNaughton, Luke Marchetti, Conor Geraghty, Conor Wynne , by Hua Tong, Oisin N. Kavanagh, Finbarr O’Sullivan, Chris S. Hawes, Philip A. Gale, Kevin Kavanagh, Robert BP Hermes, August 23, 2023. chemistry.
DOI: 10.1016/j.chempr.2023.07.014

This research was supported by Science Foundation Ireland’s Pharmaceutical Research Center (SSPC) and the Irish Research Council (IRC).

Source: scitechdaily.com