How Two Massive Clumps of Superheated Material Influence Earth’s Magnetic Field

Two colossal, ultra-hot rock formations, positioned 2,900 kilometers beneath the Earth’s surface in Africa and the Pacific Ocean, have influenced Earth’s magnetic field for millions of years, according to groundbreaking research led by Professor Andy Biggin from the University of Liverpool.



Giant superheated solid masses at the Earth’s mantle base impact the liquid outer core. Image credit: Biggin et al., doi: 10.1038/s41561-025-01910-1.

Measuring ancient magnetic fields and simulating their generation presents significant technical challenges.

To explore these deep Earth features, Professor Biggin and his team used paleomagnetic data in conjunction with advanced Earth Dynamo simulations. The flow of liquid iron in the outer core generates Earth’s magnetic field, akin to a wind turbine producing electricity.

Numerical models reconstructed critical insights about magnetic field behavior over the past 265 million years.

Even with supercomputers, conducting these long-term simulations poses enormous computational challenges.

The findings showed that temperature at the upper layer of the outer core is not uniform.

Instead, localized hot areas are accompanied by continent-sized rock structures exhibiting significant thermal contrasts.

Some regions of the magnetic field were found to remain relatively stable over hundreds of millions of years, while others displayed considerable changes over time.

“These results indicate pronounced temperature variations in the rocky mantle just above the core, suggesting that beneath hotter regions, liquid iron in the core may be stagnant, rather than flowing intensely as observed beneath colder areas,” Professor Biggin stated.

“Gaining such insights into the deep Earth over extensive timescales enhances the case for utilizing ancient magnetic records to comprehend both the dynamic evolution and stable properties of deep Earth.”

“These discoveries also bear significant implications for understanding ancient continents, including the formation and breakup of Pangea, and could help address long-standing uncertainties in ancient climate studies, paleontology, and natural resource formation.”

“It has been hypothesized that, on average, Earth’s magnetic field acts as a perfect bar magnet aligned with the planet’s rotation axis in these regions.”

“Our findings suggest that this may not be entirely accurate.”

This study is published in today’s edition of Nature Earth Science.

_____

AJ Biggin et al. Inhomogeneities in the mantle influenced Earth’s ancient magnetic field. Nature Earth Science published online on February 3, 2026. doi: 10.1038/s41561-025-01910-1

Source: www.sci.news

ALMA Discovers Superheated Gas in Distant Galaxy Protocluster

Revolutionary findings from the Atacama Large Millimeter/Submillimeter Array (ALMA) have uncovered scorching intracluster gas in the young galaxy cluster SPT2349-56, just 1.4 billion years post-Big Bang. This groundbreaking discovery challenges existing models of galaxy cluster evolution.



Artist’s impression of the forming galaxy cluster SPT2349-56, showcasing radio jets from active galaxies within a hot intracluster atmosphere. Image credit: Lingxiao Yuan.

The SPT2349-56 galaxy cluster is located approximately 12.4 billion light-years away, providing a glimpse into the universe when it was only 1.4 billion years old, or about ten percent of its current age.

This compact protocluster hosts multiple actively growing supermassive black holes and over 30 starburst galaxies.

These starburst galaxies are forming stars at a staggering rate—1,000 times faster than the Milky Way—and are densely packed within a space only three times larger than the Milky Way itself.

“We were not prepared to discover such a hot stellar atmosphere at this early stage in the universe’s history,” remarked Dazhi Zhou, a Ph.D. candidate at the University of British Columbia.

Astronomers utilized a unique observation methodology known as thermal observation, particularly employing the Sunyaev Zeldovich (tSZ) Effect.

This approach identifies faint shadows cast by hot electrons in galaxy clusters against the faint cosmic microwave background, rather than the light emitted directly by the gas.

Previously, astronomers believed that galaxy clusters lacked the maturity required for their gas to heat up and evolve during the early cosmic era.

The discovery of hot cluster atmospheres had never been recorded within the initial 3 billion years following the Big Bang.

“SPT2349-56 reshapes our understanding,” stated Professor Scott Chapman, a researcher at Dalhousie University and the University of British Columbia.

“Our findings indicate that the cluster’s atmosphere is superheating remarkably early—just 1.4 billion years after the Big Bang—during a period when we anticipated the gas to be cooler and accumulating slowly.”

“This raises the possibility that the formation of large clusters could heat their gas much more efficiently and intensely than our current models suggest.”

The intense explosion from SPT2349-56’s supermassive black hole, identified as a bright radio galaxy, may be an efficient mechanism for superheating the surrounding gas, according to the study.

This discovery implies that energetic phenomena, such as outbursts from supermassive black holes or violent starbursts, might have played significant roles in rapidly heating the gas in early galaxy clusters within the first billion years of the universe.

This superheating may be crucial for transforming these young, cold galaxy clusters into the vast, hot galaxy clusters observed today.

Current models may require reassessment regarding our understanding of how galaxies and their environments evolve.

This finding marks the earliest direct detection of hot cluster gases, pushing the boundaries of astronomical research into these environments.

The identification of a significant reservoir of hot plasma at such an early cosmic epoch forces scientists to reconsider the sequence and pace of galaxy cluster evolution.

It also generates new inquiries about the interplay between supermassive black holes and galaxy formation in shaping the universe.

“SPT2349-56 serves as an intriguing laboratory,” Zhou commented.

“We are witnessing intense star formation, energetic supermassive black holes, and this superheated atmosphere all confined within young, dense star clusters.”

“There remains a considerable observational gap between this chaotic initial phase and the more tranquil clusters observed later in cosmic history.”

“Mapping the evolution of the universe’s atmosphere over time will be a compelling avenue for future exploration.”

For further reading, see the published results in the journal Nature dated January 5, 2026.

_____

Zhou D. et al. Detection of hot intracluster gas at redshift 4.3 via Sunyaev Zeldovich. Nature, published online January 5, 2026. doi: 10.1038/s41586-025-09901-3

Source: www.sci.news