Wax moth caterpillars can metabolically digest plastic and convert it into body fat.

Plastic polymers are everywhere in our daily lives, and their durability makes them suitable for numerous uses, yet effective disposal remains a significant issue. Recent discoveries of various plastiboa insects reveal their extraordinary capability to consume and swiftly decompose petroplastics. Specifically focusing on caterpillars of the Great Wax Moth (Galleria Mellonella)—commonly known as wax worms—and low-density polyethylene, researchers have explored the extent of plastic consumption, the roles of insects and their microbiota in biodegradation, and the impact of plastic ingestion on larvae health.

Polyethylene decomposition using wax worms. Left: Plastic bag after 12 hours of exposure to approximately 100 wax worms. Right: Enlarge the area shown in the image on the left. Image credit: Bomb et al doi: 10.1016/j.cub.2017.02.060.

Plastic is essential in contemporary life, but its disposal is extremely challenging due to its resistance to biodegradation.

In 2017, researchers illustrated that larger wax moth caterpillars can effectively break down polyethylene plastics.

Polyethylene is the most widely produced plastic globally, with an annual production exceeding 100 million tons.

This plastic’s chemical properties make it resistant to decomposition, often taking decades or even centuries to fully break down.

“Around 2,000 wax worms can degrade an entire polyethylene bag within just 24 hours, and we believe that supplementing this process with nutrients like sugar could significantly decrease the required number of worms,” said Dr. Brian Catthorne, a biologist at Brandon University.

“However, understanding the biological mechanisms and fitness implications linked to plastic biodegradation is crucial for harnessing wax worms for large-scale plastic remediation.”

Utilizing diverse methods combining animal physiology, materials science, molecular biology, and genomics, Dr. Catthorne and colleagues examined wax worms, their bacterial microbiome, and the potential for extensive plastic biodegradation, including the effects of wax worms on their health and survival.

“This scenario is akin to consuming steaks. When over-saturated, excess fat is stored in adipose tissue as lipid reserves instead of being used as energy,” Dr. Catthorne explained.

“Waxworms have a proclivity for polyethylene, yet this study indicates that such a diet can lead to rapid mortality.”

“They cannot survive for more than a few days on plastic-exclusive diets and undergo substantial mass loss.”

“Nonetheless, we are optimistic about devising a co-supply strategy that not only restores fitness to a natural level.”

Researchers have pinpointed two ways in which wax worms could aid in tackling the ongoing plastic pollution dilemma.

“Firstly, as part of a circular economy, we can efficiently process large quantities of rear wax worms derived from the supplemented polyethylene diet,” Dr. Catthorne noted.

“Secondly, we could explore redesigning the plastic biodegradation pathways outside of these insects.”

“A further advantage is that mass-producing wax worms yields a significant surplus of insect biomass, offering additional economic prospects for aquaculture.”

“Our preliminary findings suggest they could be incorporated into a nutrient-rich diet for commercially available food fish.”

The author presented these survey results today at the Society for Experimental Biology Annual Conference in Antwerp, Belgium.

____

Brian J. Catthorne et al. Plastic biodegradation by insects. SEB 2025 Summary #A17.4

Source: www.sci.news

Study finds that butterfly and moth genomes have remained remarkably stable over 250 million years of evolution

This stability exists despite the incredible diversity in wing patterns, sizes, and caterpillar morphology across more than 160,000 species worldwide today, according to one study. new paper It was published in the magazine natural ecology and evolution.



lissandra belargas. Image credit: Eric Silvestre.

Butterflies and moths (in order) Lepidoptera) make up 10% of all described animal species and are extremely important pollinators and herbivores in many ecosystems.

In a new study, Professor Mark Blaxter and colleagues from the Wellcome Sanger Institute set out to understand the processes driving the evolution of chromosomes in this highly diverse group.

They analyzed and compared more than 200 high-quality chromosome-level genomes of butterflies and moths.

They identified 32 ancestral chromosomal components; Merian element Thanks to the work of pioneering 17th century entomologist Maria Sibylla Merian, most butterfly and moth species have remained intact since their last common ancestor more than 250 million years ago.

With the exception of a single ancient fusion event between two chromosomes that led to the 31 chromosomes found in most species today, the chromosomes of most modern species correspond directly to these ancestral Merian elements.

Researchers discovered that not only are chromosomes incredibly stable, but the order of genes within them is also stable.

They discovered several species with small changes, mainly involving the fusion of small autosomes and sex chromosomes. This highlights the role of chromosome length as a driver of evolutionary change.

However, scientists believe that the blue butterfly (lissandra) and the group containing cabbage butterflies (Pieris) ignored these genomic structure constraints.

These groups underwent large-scale chromosomal reshuffling, including large-scale chromosome reshuffling through chromosome breakage and fission and fusion.

This study improves our understanding of the factors that lead to genetic diversity in these insects. This will guide efforts to protect and conserve specific species facing unique challenges and environmental changes related to climate change.

“The chromosomes of most butterflies and moths living today can be directly traced back to 32 ancestral Merian elements that existed 250 million years ago,” said Dr. Charlotte Wright, researcher at the Wellcome Sanger Institute. said.

“It is surprising that even though the species has diversified extensively, its chromosomes have remained surprisingly intact.”

“This calls into question the idea that stable chromosomes may limit species diversification. Indeed, this feature may be the basis for building diversity. We We hope to find clues about rare groups that have circumvented these rules.”

“Studies like this that allow us to delve into these evolutionary processes are only possible through efforts like the Darwin Tree of Life Project, which generate high-quality, publicly available genome assemblies,” Blaxter said. the professor said.

“We are stepping up these efforts with Project Psyche, where we aim to sequence all 11,000 butterfly and moth species in Europe in collaboration with collaborators across the continent.”

“As important pollinators, herbivores, and food sources in a variety of ecosystems, and as powerful indicators of ecosystem health, a deeper understanding of the biology of butterflies and moths through Project Psyche will This will be useful for future research on adaptation and speciation for biodiversity conservation.”

_____

CJ light other. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecole Evol, published online on February 21, 2024. doi: 10.1038/s41559-024-02329-4

Source: www.sci.news

New, Mysterious Species of Moth Discovered in Europe by Scientists

Myrrhatia arcuata, a newly discovered moth species in Europe reveals gaps in our knowledge about European Lepidoptera. Its unique characteristics and the mysteries surrounding its habitat and adaptations highlight the need for continued research in this field. Above is an adult male Myrrhatia arcuata. Credit: Hausmann et al.

The order Lepidoptera, which consists of butterflies and moths, is known to number approximately 11,000 individuals.
seed and is considered well researched. However, the discovery of new genera and species in the Geometrid family suggests there is still much to learn. The results of this study were recently published in the journal Zookey. What is the name of the moth? Myrrhatia arcuata The discovery, by a team of researchers from Germany, Austria, and the United Kingdom, is one of the most remarkable discoveries in Lepidoptera in recent decades.

UFOs from decades ago

Source: scitechdaily.com