Enceladus’ Ocean Could Support Life More Effectively Than We Realize

A plume of ice particles, water vapor, and organic compounds shooting from Enceladus’s southern polar area

NASA/JPL-Caltech

The hidden oceans of liquid water beneath Enceladus’ icy exterior have long positioned Saturn’s moon as a prime candidate in the search for alien life, and the prospects appear even brighter. Recent findings revealing heat from the frozen northern pole indicate that the ocean is stable over geological periods, allowing the potential for life to thrive.

“For the first time, we can assert confidently that Enceladus is in a stable condition, which has significant implications for its habitability,” states Carly Howett from Oxford University. “While we already knew about the presence of liquid water, a variety of organic molecules, and heat, stability was the crucial missing element.”

Howett and her team utilized data from NASA’s Cassini spacecraft, which orbited Saturn from 2004 to 2017, to analyze the heat leaking from Enceladus. The moon’s interior is warmed by tidal forces resulting from Saturn’s gravitational pull, but up to now, this heat had only been observed escaping from the south polar region.

A delicate balance is necessary for life to develop in Enceladus’s ocean. It’s essential for the ocean to emit as much heat as it receives. Although the recorded heat from the South Pole doesn’t account for all incoming heat, Howett and her colleagues discovered that the North Pole is approximately 7 degrees warmer than previously assumed. Together with the heat from the South Pole, the overall heat balance is nearly precise. Due to a thicker ice shell near the equator, a substantial amount of heat escapes primarily in the polar regions.

This indicates that the ocean must maintain stability over extended durations. “Quantifying this is challenging, but we don’t anticipate a freeze in the near future, nor have we seen one recently,” Howett explained. “We understand that life requires time to evolve, and now we can affirm that this stability exists.” Nevertheless, discovering life, if it indeed exists, presents its own challenges. Both NASA and ESA are planning missions aimed at unearthing such life for decades ahead.

topic:

Source: www.newscientist.com

Cassini Discovers Organic Molecules in Newly Released Ice Grains from Enceladus’ Ocean

Enceladus, Saturn’s moon, constantly emits ice grains and gas plumes from its subterranean seas through fissures near the Antarctic region. A research team from the University of Stuttgart and the University of Berlin Fly utilized data from NASA’s Cassini spacecraft to chemically analyze newly emitted particles originating from Enceladus’ ocean. They successfully identified intermediates of organic molecules that may have biological significance (including aliphatic and (hetero)cyclic esters/alkenes, ethers/ethyl, and tentatively, nitrogen and oxygen-containing compounds), marking the first discovery of such compounds among ice particles in extraterrestrial oceans.

Artist’s impression of NASA’s Cassini spacecraft navigating through the plumes erupting from Enceladus’ Antarctic region. These plumes resemble geysers and release a mix of water vapor, ice grains, salt, methane, and various organic molecules. Image credit: NASA/JPL-Caltech.

Enceladus has a diameter of approximately 500 km, and its surface is covered by ice shells that are about 25-30 km thick on average.

Cassini made the first revelation of a hidden ocean beneath Enceladus’ surface back in 2005.

A current emerges from a fissure near the moon’s Antarctic, sending ice grains into space.

Some ice particles, smaller than grains of sand, settle on the moon’s surface, while others escape, forming a ring that orbits Enceladus around Saturn.

“Cassini consistently detected samples from Enceladus while passing through Saturn’s E ring,” noted Nozail Kawaja, a researcher at the Free University of Berlin and the lead author of the study.

“Many organic molecules have already been identified within these ice grains, including precursors to amino acids.”

The ice grains in the ring may be hundreds of years old and could have undergone changes due to strong cosmic radiation.

Scientists aimed to analyze the recently released grains to enhance their understanding of the dynamics within Enceladus’ seas.

Fortunately, they already had the relevant data. In 2008, Cassini flew directly through the ice sprays. The released primitive particles were emitted just minutes before they interacted with the spacecraft’s Cosmic Dust Analyzer (CDA) at speeds of approximately 18 km/sec. These represented not only the most recent ice grains Cassini has detected but also the fastest.

“Ice grains encompass not just frozen water, but also other molecules containing organic matter,” Dr. Kawaja stated.

“Lower impact speeds can break the ice, leading to signals from water molecule clusters that may obscure signals from certain organic molecules.”

“However, when ice grains strike the CDA at high speeds, the water molecules do not cluster, allowing previously hidden signals to emerge.”

Years of data from previous flybys were necessary to interpret this information.

This time, the authors successfully identified the molecules contained in the freshly released ice grains.

The analysis showed that certain organic molecules known to be present in the E rings were also found in the fresh ice grains, affirming their formation within Enceladus’ seas.

Furthermore, they discovered a completely new molecule that had never before been observed in Enceladus’ ice grains.

Chemical analyses revealed that the newly detected molecular fragments consisted of aliphatic, (hetero)cyclic esters/alkenes, ethers/ethyl, and potentially nitrogen and oxygen-containing compounds.

On Earth, these same compounds participate in a series of chemical reactions that ultimately yield more complex molecules essential for life.

“Numerous pathways from the organic molecules detected in Cassini’s data to potentially biologically relevant compounds exist, enhancing the possibility of habitability on the moon,” Dr. Kawaja mentioned.

“We have more data currently under review, so we anticipate further discoveries soon.”

“The molecules we identified in the newly released materials indicate that the complex organic molecules Cassini detected within Saturn’s E ring are not merely a result of prolonged exposure to space; they are readily found within Enceladus’ ocean,” added co-author Dr. Frank Postberg, also from the Free University of Berlin.

For more details, refer to the study featured in this month’s edition of Natural Astronomy.

____

N. Kawaja et al. Detection of organic compounds in newly released ice grains from the Enceladus ocean. Nat Astron Published online on October 1, 2025. doi: 10.1038/s41550-025-02655-y

Source: www.sci.news

Planetary Scientists Challenge Marine Origin of Organic Molecules in Enceladus’ Plumes

The magnetosphere of Saturn is filled with trapped plasma and energy-charged particles that consistently bombard the surface of Enceladus. This plasma mainly consists of charged particles, including water group ions created from high-energy electrons interacting with materials from the plumes. Instruments on NASA’s Cassini spacecraft reveal that on Saturn’s inner icy moons, such as Mimas and Tethys, cold plasma irradiation results in darker reflection spectra and produces blue-tinted features on their surfaces. In contrast, the consequences of plasma bombardment on Enceladus remain largely unexplored and challenging to assess.

Saturn’s Moon Enceladus and Plume. Image credits: NASA/JPL-Caltech/SSI/Kevin M. Gill.

“The discovery of complex organic molecules in Enceladus’s environment is crucial for evaluating lunar habitability, indicating that radiation-driven chemistry on the surface and within plumes can yield these molecules.”

The Enceladus plume was first identified in 2005 by NASA’s Cassini spacecraft.

These plumes emerge from a long fracture known as the “Tiger Stripes” located in Enceladus’s Antarctic region.

Originating from a subsurface ocean, the water’s energy to create plumes and heat the ocean arises from gravitational tidal forces exerted by the massive Saturn, which deforms Enceladus’s interior.

Cassini flew through the plume, “sampling” the molecules present, which were found to be rich in salts and a variety of organic compounds.

These findings have captivated astrobiologists since organic compounds found dissolved in underground oceans could lead to prebiotic molecules, the building blocks of life.

However, new insights suggest that radiation from Saturn’s powerful magnetosphere could also contribute to the formation of these organic compounds on Enceladus’s icy surface, prompting questions about their astrobiological significance.

In their research, Dr. Richards and colleagues replicated the ice composition on the surface and along the striped walls of Enceladus’s tiger.

This ice comprises water, carbon dioxide, methane, and ammonia, which were cooled to -200 degrees Celsius.

The researchers then bombarded the ice with ions to mimic the radiation environment surrounding Enceladus.

The interaction of ions with ice components generated various molecular species, including carbon monoxide, cyanate, and ammonium.

It also produced precursor molecules for amino acids, which could support metabolic reactions, aid in cell repair, and facilitate the formation of proteins that transport nutrients in living organisms.

Some of these compounds have been previously identified on Enceladus’s surface, while others were detected in feathers.

“Molecules deemed prebiotic do not necessarily originate from subterranean oceans but can instead form in situ via radiation exposure,” noted Dr. Richards.

“This does not dismiss the potential for the Enceladus seas to be habitable, but it emphasizes the need for caution when interpreting the plume’s composition.”

“Distinguishing between ocean-derived organic matter and molecules formed through radiation interactions with the surface and tiger stripes is extremely complex.”

“Additional data from future missions will be essential, including proposals for the Enceladus mission currently under review as part of the ESA’s Navigation 2050 recommendations for the science program.”

The team’s survey results were announced earlier this month during the EPSC-DPS2025 Joint Meeting in Helsinki, Finland.

____

Grace Richards et al. 2025. Water group ion irradiation studies of Enceladus surface analogues. EPSC Abstract 18:EPSC-DPS2025-264; doi:10.5194/epsc-dps2025-264

Source: www.sci.news

Underground Microbial Life Could Endure on Mars, Europa, and Enceladus with the Help of Cosmic Rays

A recent study conducted by New York University Abu Dhabi suggests that radiolysis, triggered by cosmic rays in galaxies, may serve as a potential energy source for microbial metabolism within the subsurface environments of rocky celestial bodies such as Mars, Europa, and Enceladus.

NASA’s Cassini spacecraft captured this stunning mosaic of Enceladus as it flew past this geologically active moon of Saturn on October 5, 2008. Image credit: NASA/JPL/Space Science Institute.

While ionized radiation is known for its detrimental effects on biological systems, such as causing damage to DNA and generating reactive oxygen species, it can also yield biologically beneficial outcomes.

Though direct exposure to high radiation levels can be harmful to biological activity, ionizing radiation can create numerous biologically useful products.

One such process involves the generation of valuable biological products through charged particle-induced radiolysis.

“We investigated the consequences of cosmic rays striking surfaces containing water or ice,” noted Dr. Dimitra Atli, PhD, from New York University Abu Dhabi, alongside colleagues from Washington University, the University of Tennessee, Rice University, and Santander University.

“The impact of these rays breaks down water molecules and releases tiny particles known as electrons.”

“Certain bacteria on Earth are capable of utilizing these electrons for energy, akin to how plants harness sunlight.”

“This phenomenon, known as radiolysis, allows for life to persist in dark, cold environments devoid of sunlight.”

This newly reorganized color view presents a massive surface of Europa. The image scale is 1.6 km per pixel, with the northern part of Europa on the right. Image credit: NASA/JPL-Caltech/Seti Institute.

Researchers utilized computer simulations to assess the energy output of this process on the icy moons of Mars, Jupiter, and Saturn.

These icy moons are believed to harbor liquid water beneath their thick ice crusts.

Findings indicate that Enceladus is the most promising candidate for supporting life in this manner, followed closely by Mars and Europa.

“This discovery reshapes our understanding of potential habitats for life,” Dr. Atri commented.

“Rather than confining our search to warm, sunlit planets, we can now consider cold, dark regions where water lies beneath the surface and is subjected to cosmic rays.”

“Life might exist in many more locations than previously thought.”

This image captured by Mars Express’s high-resolution stereo camera reveals an overview of Mars, with patches of yellow, orange, blue, and green on a muted gray background, depicting various surface compositions. Image credits: ESA/DLR/FU BERLIN/G. MICHAEL/CC BY-SA 3.0 IGO.

In their research, the authors introduce a new concept termed the Radiolysis Habit Zone.

Unlike the traditional “Goldilocks zone”—the region around a star where planets can sustain liquid water—this new zone emphasizes the potential for subsurface water that can be energized by cosmic radiation.

Given that cosmic rays are ubiquitous throughout the universe, this suggests that numerous additional locations may harbor life.

“These findings offer fresh directions for future space exploration,” remarked Reservers.

“Scientists can target the underground environments of these icy moons and Mars instead of solely searching for life on their surfaces.

“This study paves the way for thrilling new avenues in life exploration across the cosmos, implying that even the coldest and darkest regions may have conditions suitable for life.”

The study will be published in International Journal of Astrobiology.

____

Dimitra Atri et al. 2025. Estimating the potential of ionizing radiation-induced radiolysis for microbial metabolism in Earth’s planets and moons with tenuous atmospheres. International Journal of Astrobiology 24:E9; doi:10.1017/s1473550425100025

Source: www.sci.news

Research suggests that biological amino acids could potentially endure in the near-surface ice of Europa and Enceladus

Europa and Enceladus are important targets for the search for evidence of extraterrestrial life in the solar system. However, the surfaces and shallow subsurfaces of these airless icy moons are constantly exposed to ionizing radiation that can degrade chemical biosignatures. Therefore, sampling the icy surfaces in future life-searching missions to Europa and Enceladus requires a clear understanding of the required ice depths where intact organic biomolecules may exist. A team of scientists from NASA and Pennsylvania State University conducted experiments exposing individual biological and abiotic amino acids in the ice to gamma radiation to simulate conditions on these icy worlds.

Europa's surface stands out in this newly reprocessed color image. The image scale is 1.6 km per pixel. Europa's north side is on the right. Image courtesy of NASA / JPL-Caltech / SETI Institute.

“Based on our experiments, a 'safe' sampling depth for amino acids on Europa is about 20 centimetres (8 inches) at high latitudes in the trailing hemisphere (the hemisphere opposite the direction Europa moves around Jupiter), in an area where the surface has not been significantly disturbed by meteorite impacts,” said Dr. Alexander Pavlov, a research scientist at NASA's Goddard Space Flight Center.

“Detecting amino acids on Enceladus does not require subsurface sampling; these molecules survive radiolysis (breakdown by radiation) anywhere on Enceladus' surface, within a few millimeters (tenths of an inch) of the surface.”

Dr. Pavlov and his colleagues used amino acids in their radiolysis experiments as representative examples of biomolecules on icy moons.

Amino acids are produced by both living organisms and non-living processes.

But if certain types of amino acids were found on Europa or Enceladus, they could be a sign of life, as they may be used by life on Earth as building blocks of proteins.

Proteins are essential for life because they are used to create structures and to produce enzymes that speed up or control chemical reactions.

Amino acids and other compounds found underground in the ocean could be transported to the surface by geyser activity or the slow churning motion of the ice shell.

To assess the survival of amino acids on these planets, the researchers mixed amino acid samples with ice cooled to minus 196 degrees Celsius (minus 321 degrees Fahrenheit) in sealed, airless vials and exposed them to various doses of gamma rays (a type of high-energy light).

Because the ocean may harbor microorganisms, the researchers also tested the viability of amino acids contained in dead bacteria in the ice.

Finally, the researchers tested samples of amino acids in the ice mixed with silicate dust to see if meteorites or interior materials could be mixing with the surface ice.

This experiment provided vital data for determining the rate at which amino acids break down (called the radiolysis constant).

Using these, the scientists used the age and radiation environment of the icy surfaces of Europa and Enceladus to calculate drilling depths and where 10% of amino acids would survive radiolysis.

While experiments have been done before to test for the survival of amino acids in ice, this is the first to use low doses of radiation that don't completely break down the amino acids – changing or breaking them down would be insufficient to determine whether they were a sign of life.

This is also the first experiment to use Europa/Enceladus conditions to assess the survival of these compounds in microbes, and the first to test the survival of amino acids mixed with dust.

Scientists have found that amino acids break down faster when mixed with dust, but more slowly when they come from microorganisms.

“The slow rate of breakdown of amino acids in biological samples under surface conditions like those on Europa and Enceladus strengthens the case for future life detection measurements from lander missions to Europa and Enceladus,” Dr Pavlov said.

“Our results indicate that the decomposition rates of potential organic biomolecules are higher in the silica-rich regions of both Europa and Enceladus than in pure ice. Future missions to Europa and Enceladus should therefore be careful when sampling the silica-rich regions of these icy moons.”

“A possible explanation for why amino acids survive longer in bacteria is the way that ionizing radiation alters molecules, either directly by breaking chemical bonds or indirectly by creating nearby reactive compounds that alter or break down the target molecule.”

“It's possible that the bacterial cellular material protected the amino acids from reactive compounds produced by the radiation.”

Team paper Published in the journal Astrobiology.

_____

Alexander A. Pavlov others2024. Effects of radiolysis on biological and abiotic amino acids in shallow subsurface ice on Europa and Enceladus. Astrobiology 24(7); doi: 10.1089/ast.2023.0120

This article has been edited based on the original NASA release.

Source: www.sci.news

The surface of Enceladus may have significant amounts of untouched organic material

Enceladus, Saturn’s sixth-largest moon, is an interesting place to look to our solar system in the search for evidence of extraterrestrial life, given its habitable oceans and plumes that deposit organic-containing marine material on its surface. It brings you the right opportunities. Organic marine material may be sampled by the Enceladus lander mission. Considering the UV and plasma environment, it is interesting to understand the amount of relatively pure and unaltered organic matter present on the surface.

Enceladus’ tiger stripes are known to be caused by the moon’s icy interior spewing ice into space, creating a cloud of fine ice particles above the moon’s south pole, forming Saturn’s mysterious E ring. It is being This evidence comes from his NASA Cassini spacecraft, which orbited Saturn from 2004 to 2017. Shown here is a high-resolution image of Enceladus taken from a nearby airfield. The tiger stripes appear in a false blue color. Image credit: NASA / ESA / JPL / SSI / Cassini Imaging Team.

“By sending a mission to the surface of Enceladus, we can learn a lot about the biological signatures that may exist in Enceladus’ oceans,” said Amanda Hendricks, a senior scientist at the Planetary Science Institute. .

“Previously, it was thought that sampling the freshest material from Enceladus’ ocean would require flying through the plume and measuring plume particles and gas.”

“But now we know that we can land on the surface, and we are confident that the instrument can measure plume organic matter from the ocean in its relatively natural state.”

“Thanks to measurements from NASA’s Cassini spacecraft, we know that Enceladus’ ocean is habitable,” she added.

“We know that there is liquid water, energy, and chemicals such as carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur, which are necessary for life as we know it. It is an ingredient.”

“Enceladus is an oceanic world. Beneath its icy surface is a liquid ocean.”

“There are at least some ocean worlds in our solar system, but Enceladus is special because it is spraying ocean material into space via plumes of water vapor and ice particles at its south pole. This means Cassini’s instruments were able to reveal its signature.” As the spacecraft flew through Enceladus’ plumes, the ocean was visible. ”

“Fortunately, this study found that even though some of the plume particles were ejected into the Saturn system, nearly 90% of the plume particles returned to the Moon’s surface. This is likely due to marine material containing organic matter. But it’s sitting right on the surface.”

Organic molecules found in Enceladus’ plumes include molecules such as methane and ethane, as well as more complex molecules.

Organic matter is processed or chemically transformed by charged particles such as the sun’s ultraviolet photons and electrons.

But if scientists want to know whether ocean-derived biosignatures are present in plume particles, they need these particles to be as pristine as possible and unexposed to ultraviolet light.

An artist’s impression of NASA’s Cassini spacecraft flying through a plume of smoke spewing from Enceladus’ south pole. These plumes are much like geysers, releasing a combination of water vapor, ice grains, salt, methane, and other organic molecules. Image credit: NASA/JPL-Caltech.

In the new study, Dr. Hendricks and fellow Penn State researcher Christopher House use data from NASA/ESA’s Hubble Space Telescope and Cassini to show that ultraviolet photons can be detected on Enceladus’ plume-covered surface. We estimated how deep it could penetrate.

“What we found in this study is that there are places on the surface of Enceladus where a spacecraft can land and collect samples. If we do that, we could measure organic matter in a relatively natural state.” Dr. Hendricks said.

“That’s because the sun’s ultraviolet photons don’t penetrate very deeply into the ice surface.”

“These harmful solar UV photons only penetrate about 100 micrometers into the ice surface. That’s the width of several human hairs!”

“So the topmost surface is exposed to harmful UV photons, but only some of the organic matter is chemically changed, and soon that material is covered by fresher plume material. .”

“And the deeper particles do not undergo further deformation because the ultraviolet photons are prevented from interacting with the deeper material.”

“The newly deposited plume particles act as a shield for the material below. They act like a sunscreen!”

“Ideally, we would like to someday land on the surface of Enceladus and sample organic matter from the relatively pristine ocean.”

“This result is important because the penetration depth of these harmful ultraviolet photons is so shallow that it suggests that there is a lot of relatively primitive organic matter that can be sampled.”

“Slightly deeper particles are less exposed to UV light, meaning the organic matter has a lower age of exposure.”

“Ultraviolet light easily alters organic molecules, so the depth at which such light reaches the surface of the icy world is critical,” Dr House added.

“Because the penetration depth of ultraviolet light was found to be short, our findings confirm that there is sufficient organic material trapped and preserved within Enceladus’ ice that can be traced back to its oceans. Did.”

“It’s awe-inspiring to think that we can easily obtain so much organic matter from habitable extraterrestrial oceans using known techniques.”

of findings It was published in the magazine Communication Earth and Environment.

_____

AR Hendrix & CH House. 2023. The effective UV exposure age of organic matter on Enceladus’s surface is low. common global environment 4,485; doi: 10.1038/s43247-023-01130-8

Source: www.sci.news

Hydrogen Cyanide Detected in Enceladus’ Plume by Planetary Researchers

Using data from NASA’s Cassini mission, planetary scientists have detected several compounds critical to the habitability of Saturn’s icy moon Enceladus, including hydrogen cyanide, acetylene, propylene, and ethane. . These compounds may support living microbial communities or drive complex organic syntheses leading to the origin of life.

Diagram of Enceladus’ plume activity.Image credit: Peter other., doi: 10.1038/s41550-023-02160-0.

“Our study provides further evidence that Enceladus hosts some of the most important molecules for both producing the building blocks of life and sustaining life through metabolic reactions,” said Harvard University Ph.D. said Jonah Peter, a student in the program.

“Not only does Enceladus appear to meet the basic requirements for habitability, but we are also wondering how complex biomolecules are formed there and what kinds of chemical pathways are involved. I got an idea about it.”

“The discovery of hydrogen cyanide was particularly exciting because it is the starting point for most theories about the origin of life.”

As we know, life requires building blocks such as amino acids, and hydrogen cyanide is one of the most important and versatile molecules required for the formation of amino acids.

Peter and his colleagues refer to hydrogen cyanide as the Swiss Army knife of amino acid precursors because its molecules stack up in different ways.

“The more we tested alternative models and tried to poke holes in the results, the stronger the evidence became,” Peter said.

“Ultimately, it became clear that there was no way to match the plume composition without including hydrogen cyanide.”

Saturn’s moon Enceladus with plumes. Image credit: NASA / JPL-Caltech / SSI / Kevin M. Gill.

In 2017, planetary scientists discovered evidence of chemistry on Enceladus that could help sustain life in the ocean, if it exists.

The combination of carbon dioxide, methane, and hydrogen in the plume suggested methanogenesis, a metabolic process that produces methane.

This process is widespread on Earth and may have been important for the origin of life on Earth.

Peter and his co-authors found evidence for additional energetic chemical sources that are far more powerful and diverse than methane production.

They discovered a series of oxidized organic compounds, showing scientists that Enceladus’ underground ocean potentially has many chemical pathways to support life. That’s because oxidation promotes the release of chemical energy.

“If methane production is like a small clock battery in terms of energy, then our findings suggest that Enceladus’ ocean could provide large amounts of energy for any life that might exist. This suggests that we may be able to provide something similar to car batteries,” said Dr. Kevin Hand, a researcher at NASA’s Jet Propulsion Laboratory.

Unlike previous studies that used laboratory experiments and geochemical modeling to recreate the conditions Cassini found on Enceladus, the authors relied on detailed statistical analysis.

They examined data collected by Cassini’s ion and neutral mass spectrometers, which study the gas, ions, and ice grains around Saturn.

By quantifying the amount of information contained in the data, the authors were able to uncover subtle differences in how well different compounds explain the Cassini signal.

“There are a lot of potential puzzle pieces that can be put together when trying to reconcile observed data,” Peter said.

“We used mathematics and statistical modeling to identify the combination of puzzle pieces that best matched the plume’s composition and made the most of the data without over-interpreting the limited data set.”

of findings It was published in the magazine natural astronomy.

_____

JS Peter other. Detection of HCN and diverse redox chemistries in Enceladus plumes. Nat Astron, published online on December 14, 2023. doi: 10.1038/s41550-023-02160-0

Source: www.sci.news

Potential presence of cyanide in the ocean of Saturn’s moon Enceladus could aid in sustaining life

Illustration of NASA’s Cassini spacecraft diving through the plume of Saturn’s moon Enceladus.

NASA/JPL-California Institute of Technology

The plumes of water vapor spewing from Enceladus’ surface appear to contain hydrogen cyanide, which, perhaps counterintuitively, suggests that there may be life in the oceans beneath the surface of this icy moon of Saturn. It shows that it is possible.

The Cassini spacecraft flew through Enceladus’ plume several times in the early 2000s, capturing samples as it hurtled past. Preliminary analyzes of these samples have revealed several elements and compounds that may be important for life, but many are not, as the molecules tend to fracture after impacting Cassini’s sampling chamber at high speeds. It has been difficult to identify specific compounds.

Jonah Peter Researchers at Harvard University performed a reanalysis of the Cassini data using new statistical methods and were able to extract more compounds present in the plume. They found evidence of several previously undetected compounds, including hydrogen cyanide, acetylene, ethane, and even trace amounts of the alcohol methanol.

All of these compounds could be part of chemical reactions important to life, but hydrogen cyanide is particularly promising.

“We still don’t have a complete picture of the molecules that are there and are necessary for the origin of life. We don’t even know how the origin of life occurred on Earth,” Peter said. say. “But we know a lot about some of the building blocks that are necessary for the beginning of life, and hydrogen cyanide is one of those very versatile building blocks.”

We know that it can be a building block for amino acids, RNA, and other large biomolecules, so its presence in the plume points to the possibility of life in Enceladus’ subsurface ocean. That’s a good sign.

topic:

Source: www.newscientist.com