Researchers exploring the solar system’s history focus on a diverse range of comets and asteroids, particularly those classified as Near-Earth Objects (NEOs). These celestial bodies not only offer insights into the origins of water and organic materials but also continue to impact planets across the solar system, including Mars, Earth, Venus, and Mercury. Their close proximity to Earth facilitates detection and observation with smaller telescopes, increasing the potential for successful interceptions, potentially involving rovers and landers.
An international research team has recently classified and identified 39 new NEOs between February 2021 and September 2024, utilizing two advanced telescopes: Itaparica Observatory (OASI) in Brazil, along with the 2.15-meter Jorge Sahade telescope at Complejo Astronomico El Leoncito (CASLEO) in Argentina.
The research team used these telescopes to study variations in the brightness of NEOs over time. Since NEOs are essentially blocks of ice or rock that reflect sunlight rather than emit light, their visibility from Earth is influenced by the angle between Earth and the Sun along with their size, shape, and structure. By measuring the periodic changes in brightness, scientists calculated the rotation rates of these objects.
The diameters of the 39 NEOs varied from 0.1 to 10 kilometers (0.06 to 6 miles), with most ranging between 0.5 to 3 kilometers (0.3 to 2 miles). Their shapes ranged from nearly spherical to elongated, cigar-like forms. The team successfully determined the rotation periods for 26 of these NEOs, noting that the shortest rotation cycle was just over two hours while the longest approached 20 hours. Notably, 16 of these NEOs rotated in under 5 hours, suggesting that many are fast-rotating bodies.
The study established that a rotation period exceeding 2.2 hours is the upper limit for small NEOs known as rubble pile asteroids, which are loose formations held together by self-gravity. Beyond this threshold, centrifugal forces could destabilize them. Conversely, those NEOs under 250 meters (820 feet) tend to be more solid, dubbed monoliths. The findings indicated that smaller and medium-sized NEOs exhibit varied structures and formation histories.
Using advanced imaging techniques through telescope lenses that filter specific light wavelengths, the researchers analyzed the chemical composition of 34 NEOs. They employed 2 additional filters alongside 4 filters designed for green and red wavelengths, including near-infrared wavelengths. Their results revealed that 50% of the NEOs are silica-based, resembling many terrestrial rocks, with 23.5% comprising carbon-rich materials, approximately 9% metals, and around 6% basaltic elements. The remaining composition was a mixture of carbon and silicates as well as calcium and aluminum.
While the chemical analysis largely aligned with previous findings, the researchers found a lack of olivine—a mineral typically prevalent in smaller asteroids. This absence can be attributed to the fact that most sampled NEOs exceeded 200 meters (660 feet), surpassing the typical size for olivine-rich asteroids.
This research enriches our understanding of NEOs and their physical and chemical properties. The team advocates for an integrated research approach that leverages technology and multi-telescope observations to effectively characterize small celestial objects. Future studies should prioritize close monitoring of NEOs, especially those approaching their rotation threshold, and employ radar observations to confirm the existence of potential binary pairs. By analyzing reflected visible and near-infrared light, researchers can further unveil the chemical makeup of the asteroid surfaces.
Post views:
274
Source: sciworthy.com


